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A fairly simple theoretical model of an anisotropic compliant wall has been 
developed. It has been used to undertake a comprehensive numerical study of 
boundary-layer stability over such walls. The study is based on linearized theory, 
makes the usual quasi-parallel-flow approximation, uses the Blasius profile as the 
basic undisturbed flow and assumes two-dimensional disturbances. An investigation 
is carried out of the effects of anisotropic wall compliance on the Tollmien-Schlichting 
waves and the two previously identified wall modes, namely travelling-wave flutter 
and divergence. In addition global convergence techniques are used to search for 
other possible instabilities. 

An asymptotic theory, valid for high Reynolds numbers, is also presented. This 
can provide accurate estimates of the eigenvalues. It is applicable to a much wider 
class of compliant walls than the relatively simple model used for the numerical 
study. An important use of the asymptotic theory is to help identify and elucidate 
the various energy-exchange mechanisms responsible for stabilization or desta- 
bilization of the instabilities. A reduction in the production of disturbance energy 
by the Reynolds shear stress is the main reason for the favourable effect of 
anisotropic wall compliance on instability growth. Other energy-exchange mecha- 
nisms, which have been found to make a significant contribution, include energy 
transfer from the disturbance to the mean flow due to the interaction of the 
fluctuating shear stress and the displaced mean flow, and the work done by the 
perturbations in wall pressure and, shear stress. 

It is found that anisotropic wall compliance confers very considerable advantage 
with respect to reduction in instability growth rate and transition delay. Using a 
fairly conservative criterion an almost ten-fold rise in transitional Reynolds number 
is predicted for anisotropic walls having the appropriate properties. Anisotropic wall 
compliance makes travelling-wave flutter much more sensitive to viscous effects and 
has a considerable stabilizing influence. The application of global convergence 
methods has led to the discovery of an anomalous spatially growing eigenmode 
which, according to conventional interpretation, would represent an instability. 
Further study of an appropriate initial-value problem has revealed that the new 
eigenmode is probably not an instability and that, for compliant walls, complex 
wavenumbers with positive real and negative imaginary parts do not necessarily 
correspond to an instability. 

1. Introduction 
The idea of reducing turbulence or instability growth rates by generating a 

negative Reynolds shear stress at  the wall is likely to be appealing to most people 
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FLGURE 1 .  Cross-section of one of the non-isotropic compliant walls used by Grosskreutz (1971). 
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FIGURE 2. Schematic sketch of a simple surface-based theoretical model of an anisotropic 
compliant wall. 

with a knowledge of fluid mechanics. Not surprisingly the concept has a fairly long 
history. It can be traced back a t  least as far as an unpublished report by Ffowcs 
Williams (1964). (The use of anisotropic wall compliance may even have originated 
with the dolphin (see $6.2).) The ideas used in the present paper stem from the work 
of Grosskreutz (1971, 1975). He carried out a series of experiments on turbulent flow 
over compliant walls of the type depicted in figure 1 .  The walls were made of silicone 
rubber and the inclined members were in the form of either blades or stalks. The basic 
idea behind the design of his walls was to ensure that, under the action of fluctuating 
pressure forces, the surfaces responded in such a way as to generate a negative 
Reynolds shear stress and thereby reduce the production of turbulence. Grosskreutz’s 
experimental results were not particularly promising. Nonetheless, the basic idea 
remains attractive, not only for reducing turbulence levels but also for the 
postponement of laminar/turbulent transition. Accordingly, the theoretical model of 
the compliant wall, used for the present study and depicted in figure 2, is based, in 
part on a schematic sketch presented by Grosskreutz to explain his concept. 

The theoretical model illustrated in figure 2 comprises a thin plate supported on 
inclined, sprung, lever arms. Under the action of small-amplitude pressure 
fluctuations the ends of the lever arms will move in such a way that the horizontal 
and vertical displacements are simply related, that is 

(cos8 = qsin8, (1.1) 

where 0 defines the equilibrium position of the swivel arms (see figure 2). With the 
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FIGURE 3. Sketch of a fibre-composite anisotropic compliant wall. 

flow direction as shown in figure 2 the product of the streamwise and normal velocity 
components at  the wall will always be positive, thereby giving a negative Reynolds 
shear stress. 

What is meant by anisotropic wall compliance in the present context ? We shall 
show in $2 that for the present model the speed of free waves is independent of 
direction. So a t  first sight the wall is not inherently anisotropic. When a fluid flows 
over the surface the symmetry of behaviour exhibited by waves to the left and right 
is broken. This in itself, though, does not constitute evidence for anisotropic wall 
compliance. For example, the simple plate/spring model, analysed by Carpenter &, 
Garrad (1985, 1986), and the single- and two-layer compliant walls, investigated by 
Duncan, Waxman & Tulin (1985), Fraser & Carpenter (1985), Duncan (1988) and 
Yeo (1988), also exhibit a lack of symmetry between upstream- and downstream- 
travelling waves when interacting with a fluid flow. These compliant walls would not 
usually be considered anisotropic. The crucial distinction is that the response of the 
isotropic walls would remain invariant to flow direction, whereas in the present case 
the relationship (1.1) between the streamwise and normal surface displacements 
would undergo a change of sign when the flow direction is reversed. The analysis 
given in the present paper will show that this change of sign has important 
consequences. Thus in the present context, which is restricted to two-dimensional 
disturbances, the term anisotropic wall compliance connotes a change in response 
when the direction of flow is reversed, rather than an inherent anisotropy which 
would be revealed by the properties of free waves. When three-dimensional 
disturbances are considered, other types of anisotropic wall compliance become 
significant, for example orthotropic plates supported on springs, see Carpenter 
(1984b) and Joslin, Morris & Carpenter (1990). These will be analysed in subsequent 
papers. 

Figure 2 could be regarded as depicting a theoretical model of the Grosskreutz 
surface illustrated in figure 1, in much the same way as the plate/spring model of 
Carpenter & Garrad was used to study the original Kramer (1960) coatings. 
Alternatively, just as the plate/spring model can be regarded as a rough 
approximation for the two-layer compliant walls used by Daniel, Gaster & Willis 
(1987) (see also Gaster 1987) in their experiments, the present model can be thought 
of as an approximate representation of the more practical anisotropic compliant wall 
depicted in figure 3. This wall comprises a thin plate covering an anisotropic fibre- 
composite substrate which consists of inclined stiff fibres imbedded in a soft 
viscoelastic matrix. The fibres would be so oriented as to lie in planes making an 
angle 6 to the horizontal. Following this analogy 6 will hereafter be referred to as the 
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fibre angle. The type of model illustrated in figure 2 was termed surface-based by 
Carpenter (1990) because the associated equation of motion does not depend on y, the 
coordinate perpendicular to the surface. It is possible to develop a more realistic 
volume-based theoretical model of such an anisotropic wall and this has been done by 
Yeo (1986, 1990). For his wall model the equations of motion for the wall depend on 
y with a consequent increase in the computational requirements and in the 
complexity of the problem. More general anisotropic compliant-wall models will be 
investigated analytically in the present study, but the numerical investigation will 
be confined to the relatively simple surface-based model. Its relative simplicity has 
great advantages for carrying out a comprehensive numerical study and for 
clarifying the role of the various stabilizing and destabilizing mechanisms which 
come into play when a fluid flow interacts with an anisotropic compliant wall. 

The present paper represents the culmination of several years work on the effects 
of anisotropic wall compliance on boundary-layer stability and transition. Pre- 
liminary versions of various aspects of the work have appeared in conference 
proceedings and elsewhere. An analysis of the growth of Tollmien-Schlichting waves 
over the present compliant-wall model was presented by Carpenter (1984~).  He 
found that the instability growth rates and the size of the unstable region in 
frequency/Reynolds-number space were both dramatically reduced as the fibre angle 
was increased. As expected it was found that reversing the flow direction led to a rise 
in instability growth rates. The initial indications were that this sort of surface had 
great potential for transition delay. This still remains the case. 

An important feature of boundary-layer instability over compliant walls is the 
existence of several other modes, or types, of instability in addition to Tollmien- 
Schlichting waves. These were termed flow-induced surface instabilities by 
Carpenter & Garrad ( 1985) because unlike Tollmien-Schlichting waves they depend 
fundamentally on surface flexibility and could exist in an inviscid flow. They are 
similar to the instabilities encountered in aero- and hydroelasticity. Two main types 
of these flow-induced surface, or hydroelastic, instabilities are found in the case of the 
compliant wall illustrated in figure 2. These are : divergence, which occurs in the form 
of a stationary or very slowly moving wave ; and, travelling-wave flutter, which 
typically has phase speeds close to the free-stream velocity. Carpenter & Garrad 
(1986) showed that divergence is an absolute instability, whereas, like Tollmien- 
Schlichting waves, travelling-wave flutter is a convective instability. But, 
whereas Tollmien-Schlichting waves belong to the Class A waves of Benjamin (1960, 
1963) and Landahl (1962), travelling-wave flutter belongs to their Class B. This 
implies that the response of the travelling-wave flutter to irreversible energy transfer 
will be the exact opposite to that of the Tollmien-Schlichting waves. Consequently, 
as found by Carpenter & Garrad (1986), any wall property that has a stabilizing 
effect on the Tollmien-Schlichting waves will inevitably have a destabilizing effect 
on the travelling-wave flutter. It does not necessarily follow, therefore, that any real 
advantage will result from the use of anisotropic wall compliance. Stabilization of the 
Tollmien-Schlichting waves may be gained only a t  the expense of destabilizing 
travelling-wave flutter or divergence. Plainly it is essential to carry out a complete 
investigation, which properly takes into account the hydroelastic instability modes, 
before any firm conclusions can be drawn regarding the advantages or disadvantages 
of anisotropic wall compliance for transition control. 

In order to take the hydroelastic instabilities into account properly an asymptotic 
theory for high Reynolds number was developed. This theory represents an 
extension of the relatively simple theory of Carpenter (1984a), and Carpenter & 
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Garrad (1980) for isotropic compliant walls. The new theory allows for horizontal, as 
well as vertical, wall displacements and also incorporates viscous effects. A 
preliminary version was presented by Carpenter (1985a) and it was found that, in 
contrast to the isotropic case, viscous effects, primarily in the form of fluctuating wall 
shear stresses, were highly significant for anisotropic compliant walls. Fortunately it 
was found that, although the original results of Carpenter (1984~)  were somewhat 
optimistic, the use of anisotropic wall compliance could still lead to substantial 
reductions in the instability growth rates even with the hydroelastic instabilities 
properly taken into account. A more general and rigorous version of the asymptotic 
theory has been given by Carpenter & Gajjar (1990) and some preliminary results 
with the hydroelastic instabilities properly taken into account appeared in Carpenter 
& Morris (1985) and Carpenter (1987 b). It has been found that the asymptotic theory 
also gives a reliable, albeit qualitative, guide to the effects of wall compliance on the 
Tollmien-Schlichting waves. 

The formulation of the problem and the numerical methods used to solve it have 
also been developed and improved compared to those used initially. The original 
calculations by Carpenter (1984c, 1985a) were based on linear temporally growing 
instabilities and the formulation of the problem followed closely the methods of 
Carpenter & Garrad (1985). An improved formulation of the problem was given in 
Carpenter & Morris (1985) with a further improvement by Morris (1986). This is 
essentially the formulation followed in the present paper. The more realistic case of 
spatially growing linear instabilities was assumed by Carpenter & Morris and this is 
carried over to the present paper. In order to verify that all the potentially unstable 
modes were being taken into account, the globally convergent methods of Bridges & 
Morris (1984) were applied by Carpenter & Morris (1985) to the resulting eigenvalue 
problem. In this case the Orr-Sommerfeld equation was integrated numerically by 
means of a Chebyshev Tau spectral code. These methods are used in the present 
paper together with other numerical techniques. 

One of the central problems of carrying out any numerical investigation of 
boundary-layer stability over a compliant wall is the proliferation of parameters 
relating to the wall properties. This problem is exacerbated by the introduction of 
anisotropic wall compliance which leads to a further increase in the number of wall 
parameters. One approach which greatly improves this state of affairs is to work with 
compliant walls having properties which render them marginally stable with respect 
to the two hydroelastic instabilities. This method was introduced by Carpenter 
(1985 b,  1987 a) for isotropic compliant walls. The original idea was that the surfaces 
with the best transition-delaying properties would need to be as compliant as 
possible without being vulnerable to hydroelastic instability. Thus, if the wall 
properties were restricted to the set that corresponded to marginal stability with 
respect to both divergence and travelling-wave flutter, the remaining wall 
parameter@) could be varied to find the properties giving the greatest transition 
delay. This approach has considerable merit for application to the present case of 
anisotropic wall compliance. Apart from finding the wall properties which give the 
best performance in some specified sense, it also has two other advantages : it makes 
the amount of computing required more manageable and makes the comparison 
between walls with differing degrees of anisotropy more meaningful. The com- 
paratively simple methods used to find these ‘optimal’ properties have recently been 
investigated by Joslin (1987) and Joslin & Morris (1989) who devised more rigorous 
numerical techniques for carrying out the optimization. They have been able to 
confirm that the relatively straightforward methods used in the present paper for 



176 P. W .  Carpenter and P. J .  Morris 

determining the ‘optimal ’ properties give results which are reasonably close to the 
true optimum values. In the present paper we have also used the en method to 
predict transitional Reynolds numbers. This has allowed us to estimate the greatest 
transition delay possible using an anisotropic compliant wall. Adopting rather 
conservative criteria we estimate that a nearly ten-fold rise in transitional Reynolds 
number, as compared to the rigid surface, is possible in theory. 

The work of Yeo (1986,1990), using volume-based theoretical models of anisotropic 
compliant walls, was briefly mentioned above. This is a very thorough numerical 
investigation of the Tollmien-Schlichting and travelling-wave flutter (Class B) 
instabilities over various types of anisotropic compliant wall. It is an excellent piece 
of work and well worth studying in detail. Where appropriate Yeo’s results will be 
compared to those obtained by means of the present methods, so detailed comments 
on his work are postponed until $6.3 and only a brief description given here. He 
considered two- and three-dimensional, spatially growing instabilities over various 
compliant walls. The two cases that are relevant to the present work are : (i) single- 
layer, fibre-composite walls with various fibre angles, elastic moduli and depths; (ii) 
double-layer walls, comprising a thin plate over a fibre-composite wall ; again various 
combinations of properties were investigated. Our model may be regarded as an 
approximate model for the second case, but is less likely to be a good model for the 
first case. Yeo predicted transitional Reynolds numbers as high as 8.4 times the rigid- 
wall value for certain of the double-layer anisotropic compliant walls. 

Before ending these introductory remarks it is worth commenting on one of Yeo’s 
conclusions. He found that for anisotropic wall compliance with positive fibre angles 
the contribution of the negative Reynolds shear stress generated at the wall was 
virtually negligible. Accordingly, he concluded that the orientation of the fibres with 
respect to flow direction was unimportant. Our investigations substantially confirm 
Yeo’s conclusions regarding the contribution of the negative Reynolds shear stress. 
But we find that for a compliant wall the boundary conditions at the surface exert 
an influence on the disturbance velocities that is felt across the whole boundary 
layer. This results in a substantial reduction in the Reynolds shear stress across most 
of the boundary layer, although there is a local rise in the vicinity of the viscous wall 
layer. Thus the production of energy by the Reynolds stress is reduced by wall 
compliance over the bulk of the boundary layer. This favourable effect is further 
enhanced for anisotropic compliant walls with positive fibre angle, but reduced when 
the fibre angle is negative. Thus the orientation of the fibres does have an important 
effect on energy production, but not primarily by the direct generation of negative 
Reynolds stress. 

Furthermore, with our approach it is possible to study all the mechanisms 
responsible for irreversible energy exchange at the wall. We have found that, as well 
as energy production by the Reynolds stress and viscous dissipation, additional 
energy transfer between the disturbance and the mean flow due to the interaction of 
the fluctuating shear stress and the displaced mean flow, and the rate of irreversible 
work done by the fluctuating wall pressure and shear stress also play important roles 
in determining the response of the Tollmien-Schlichting waves to anisotropic wall 
compliance. These additional energy-transfer mechanisms are sensitive to the 
orientation of the fibres. Anisotropic wall compliance substantially changes the 
phase shift in the eigenfimction (normal velocity of disturbance) which occurs across 
the viscous wall layer. The change in phase is favourable for stabilization of the 
Tollmien-Schlichting waves when 0 is positive, because it leads to a rise in the 
irreversible work done by the fluctuating wall pressure. The phase shift in the wall 
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layer also occurs for isotropic walls, as shown by Carpenter & GajjaT (1990), and is 
destabilizing in this case, but is outweighed by the phase shift of opposite sign which 
occurs across the critical layer. When the flow direction is reversed, i.e. 8 is negative, 
the unfavourable phase shift across the wall layer, occurring in the isotropic case, is 
magnified. This reduces the irreversible work done by the fluctuating wall pressure, 
thereby destabilizing the Tollmien-Schlichting waves. Irreversible energy transfer at  
the wall due to the work done by the fluctuating shear stress also varies 
asymmetrically with 8, but in a rather more complex way. Thus, in contrast to Yeo, 
we conclude that the sign of 8 is important, although the reasons are a good deal more 
complex than the initial simple physical arguments based on the sign of the Reynolds 
shear stress would suggest. We do agree with Yeo, however, with respect to the 
indifference of the hydroelastic instabilities to the sign of the fibre angle. 

The remainder of the present paper is set out as follows. The theoretical model for 
the anisotropic compliant wall is described in $ 2  where the equation of motion is 
derived and the properties of the free waves are investigated. The formulation of the 
eigenvalue problem, corresponding to the coupled Orr-Sommerfeld and wall 
equations, is discussed in $3. The numerical methods are discussed in $4. Section 5 
is devoted to the asymptotic theory for high Reynolds numbers and its implications 
and applications. This section contains the most fundamental results and much of 
the analysis and results apply to general anisotropic and isotropic compliant walls, 
including those of Yeo. It is made up of the following sub-sections. The asymptotic 
theory is described briefly in $5.1. The concept of inviscid equivalence between 
isotropic and anisotropic compliant walls for the hydroelastic instabilities is 
developed in $5.2. In $5.3 the concept of optimal wall properties is developed. The 
mechanisms for stabilization and destabilization are studied in $ 5.4, both by means 
of energy equations for the flow and the wall, and by means of the asymptotic theory. 
Finally in 55.5 the asymptotic theory is used to investigate the effect of anisotropic 
wall compliance on the travelling-wave-flutter instability. The results of the 
numerical investigation of instability and transition delay are presented in $6. The 
results obtained by using a global convergence scheme are described in 0 6.1. Perhaps 
the most significant outcome of this part of the numerical investigation was the 
discovery of an anomalous, apparently unstable, spatially growing eigenmode for 
which the real part of the complex wavenumber is positive and the imaginary part 
negative. Notwithstanding the conventional interpretation, the eigenmode probably 
does not represent an instability. The main results for boundary-layer stability and 
transition delay are presented in $6.2. A brief comparison between the present study 
and that of Yeo (1986, 1988, 1990) is made in $6.3. Finally $7 contains the main 
conclusions of the investigation. 

2. Theoretical model for anisotropic compliant wall 
For the present study the compliant surface is permitted to move in both the 

horizontal and vertical directions. In general, for such cases two equations of motion 
would be required. Considerable simplification can be achieved by adopting the 
surface-based theoretical model illustrated in figure 2 .  This model retains the 
essential features of anisotropic wall compliance but has the advantage that there is 
a simple relationship (1.1) between the horizontal and vertical displacements. The 
more general case will be considered in $5. The model can be thought of &s an 
approximate representation of a compliant wall comprising a thin plate supported on 
an anisotropic substrate which consists of sheets of relatively stiff fibres embedded 



178 P .  W .  Carpenter and P .  J .  Morris 

in a softer matrix, see figure 3. As a consequence of the relationship (1.1) between the 
horizontal and vertical displacements only one equation of motion is required for 
such a compliant wall. 

Since only small displacements of the surface are being considered the principle of 
superposition can be used to determine the restorative structural forces generated by 
the hydrodynamic driving forces. First, consider the forces per unit area 
perpendicular to the surface. In  this case the driving force is - (pk - a:) where p;  
and c& are respectively the fluctuating dynamic pressure and direct viscous stress. 
In general the effects of a perturbation in body force should also be included and this 
is given by g(p-p,) where g is the acceleration due to gravity, p is the density of the 
free stream and p ,  is the density of the substrate, whether solid or fluid. Classic thin- 
plate theory can be used, as in Carpenter & Garrad (1985, 1986), to give the 
corresponding opposing force due to the bending stiffness in the form Ba4v/ax4, 
where B is the flexural rigidity given by 

Eb3 
B =  

12(1- v;) 

where E is the elastic modulus of the plate material, b is the plate thickness, and vp 
is the Poisson ratio. In addition to this there is the vertical component of the spring 
force given by KIM cos 0 = Kq where K is the spring stiffness, 1 is the length of the 
swivel arms (fibres), and 68 is the angular displacement of the end of a swivel arm 
from its equilibrium position. 

The driving force per unit area horizontal to the surface is supplied by the 
fluctuating shear stress, 7:. It is opposed by the horizontal component of the spring 
force, KEG8 sin 8 = K t .  In addition there is a tension force per unit area induced in the 
plate by differential motion of the swivel arms. 

In  order to derive an expression for the induced tension per unit area let us 
consider three adjacent swivel arms. Let the equilibrium positions of their ends be 
given by x- Sx, x, x + ax. The respective horizontal displacements would be 

Thus the strains in each of the portions of plate either side of the central swivel arm 
are given by a t  l a y  36 i a y  

ax 2ax2 ax 2ax2 
1 +----ax and 1 +-+--ax. 

From the values of the strains and from the application of Hooke’s law the net 
horizontal tension force acting on the central swivel arm can be obtained in the form 
Eb(a26/az2)dx. Provided that the swivel arms (or fibre sheets) are sufficiently close 
together compared to the wavelength of the instability, the limit &+dx can be 
taken. 

For small displacements a point on the surface can be thought of as moving in one 
direction only, i.e. perpendicular to the equilibrium position of the swivel arms 
(fibres) - as suggested in figure 2. If the vertical and horizontal forces per unit area 
given above are resolved in this direction a single equation of motion can be written 
as 

ayzae) a25 pm b at2 = - (pk -  a&) cos 8+ T& sin 8-K,  168+ Eb-sin 8-B- cos 8, (2.2) ax2 ax4 
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FIQURE 4. Dispersion curvea for free waves over anisotropic compliant walls. The properties are 
a6 in figure 18 with material density equal to 1000 kg/m3 and Poisson ratio 0.5. -, 0 = 0; 
___  , e = 450; -.-, e = 600. 

where pm is the density of the plate material and the equivalent spring stiffness, K,, 
incorporates the perturbations in body force and is defined by 

The term on the left-hand side of (2.2) represents the mass per unit area of the plate 
times its acceleration. The terms on the right-hand side of (2.2) represent the various 
forces per unit area acting on the plate. The first two of these are the driving 
hydrodynamic forces generated by the disturbances in the boundary layer and the 
remainder are the various restorative structural forces in the compliant wall. 

When (1.1) is substituted, noting that vf = 160 = yJcos8, (2.2) can be rewritten 
solely in terms of T,I~ as 

a2v a49f - a2v 
at ax* ax2 

bp, + B cos' 8- Eb f sin2 0 + K ,  qr = ( -&, + u;) cos 0 + 7; sin 8. (2.4) 

Material damping could be incorporated into the model in the same way as by 
Carpenter & Garrad (1985). They used a complex elastic modulus to model the 
viscoelastic properties of the materials. This approach can be carried over to the 
present case by introducing a complex elastic modulus for the plate material and/or 
a complex spring stiffness to model the viscoelastic properties of the substrate 
material. The viscoelastic loss factor is the ratio of the imaginary to the real part of 
the elastic modulus or spring stiffness. 

Let us now consider briefly the behaviour of free waves for the present model. 
Assume that the surface displacement takes the form of a travelling wave, so that 
7 - exp [ia(x-cCt)], where a is the wavenumber and c is the phase speed. When the 
fluctuating pressure and viscous stress terms in (2.4) are set equal to zero, 
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substitution of the above wave form in (2.4) yields a simple quadratic equation for 
c which can be solved to give 
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a4B cos2 8 + a2Eb sin2 8 + K ,  
c; = (2.5) 

“2bPm 

The notation co has been introduced to indicate that this is the free-wave speed. 
Note that, as mentioned in $1,  (2.5) is invariant with respect to sgn8 and, 

accordingly, co is the same for left- and right-running waves. In this sense the model 
is not inherently anisotropic. It does, however, respond in an anisotropic manner to 
flow-generated forces, in the sense that the response changes when the flow direction 
is reversed. Typical variations of co with wavenumber are shown in figure 4. The 
minimum that occurs in the variation of free-wave speed with wavenumber is an 
important feature for deriving simple formulae for predicting the onset speeds of the 
hydroelastic instability modes. When 8 is set equal to zero, (2.2) and (2.5) reduce to 
the forms given by Carpenter & Garrad (1985, 1986) for the isotropic case. 

3. Formulation of the problem 
The fundamental problem considered here is the development of two-dimensional 

disturbances in a two-dimensional boundary layer flowing over a deformable surface. 
It is assumed that the boundary layer is locally parallel and that the disturbance 
velocity is sufficiently small for linear theory to hold. 

The two perturbation velocity components and pressure are expressed in the form : 

where E = exp (i(m - wt)} ,  Urn is the free-stream speed, and u’ and v‘ are respectively 
the streamwise and normal disturbance velocities. Here we are considering spatially 
growing disturbances so a (=  a,+ iai) is the complex wavenumber and w is the real 
frequency of the disturbance. u, and - ai are respectively the physical wavenumber 
and growth rate of the disturbance. The complex phase speed is given by c = w / a ;  
but w / a ,  corresponds to the actual phase speed. 

When (3. I )  is substituted into the linearized Navier-Stokes equations, which are 
then made non-dimensional in the conventional way, the following three equations 
are obtained for 4, $,and 5: 

(3.2) 
1 

+Do$ + iE*@ -- (DZ-z*a) 0 = 0, 
Re 

-i(G* -z*u) 
1 

(3.3) 

(3.4) 
where D = d/dg, Re = U ,  S*/v, 6* is the boundary-layer displacement thickness, v is 
the free-stream kinematic viscosity, and overbars denote non-dimensionalization 
with respect to 6* or U, as appropriate. The asterisks are used to distinguish between 
non-dimensionalization using 6* as the reference length and the use of U,/v later in 
the paper. 

@ and Zi can be eliminated from (3.2)-(3.4) to obtain the Orr-Sommerfeld equation 
in terms of v”, i.e. 

- i(a* - (F*@ 6 + DI; __ (D2 - a*2) fi = 0, 
Re 

i6*& -I- Dv” = 0, 
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The usual outer boundary conditions are imposed on Zi and v” requiring them to decay 
exponentially as co. At the wall the velocity is required to be continuous across 
the deformable surface. The surface displacements are expressed in the form : 

{ [ , T I  = (&,rj*}b*E+c.c. (3.6) 

The linearized boundary conditions at the surface then become 

where suffix w denotes evaluation a t  the wall, i.e. at  = 0, and DO, is the non- 
dimensional undisturbed velocity gradient at  the wall. Equations (3.7) and (3.8) are 
a straightforward extension of the boundary conditions originally derived by 
Benjamin (1960) and Landahl (1962) (see also Carpenter & Garrad 1985). 

Using the continuity equation (3.4), (3.8) and (1 .1)’  the boundary condition (3.7) 
can be re-expressed solely in terms of 6, and its derivatives as 

G* cos 8D4, + (cos BDU, +iG* sin 8) &*4, = 0. (3.9) 

Using (2.5) the non-dimensional free-wave speed can be expressed as 

~ i * ~ C z  cos2 0 + c~*~C*, sin2 0 + C& 
(3.10) - c -A= 

o - c  urn ( C$ @*a 

where the non-dimensional wall parameters are defined as follows 

Using (3.10) and (3.11) the equation of motion (2.4) for the wall can be expressed in 
non-dimensional terms as 

(3.12) 

where the non-dimensional amplitudes, a, and f,, of the viscous stresses are defined 
similarly to 2;. 

In order to express the equation of motion in terms of v” and its derivatives 
expressions have to be derived for 1;,, 6, and ?,. The expression for pressure can be 
obtained from (3.2) with use of (3.4) to eliminate Zi. It takes the form: 

( D36, - CZ*~DG, + @*@*Re 6, tan 0). 
1 

Re &*2 
3, = - (3.13) 

The expressions for the two viscous stresses can be derived from Newton’s law of 
viscosity with use of (3.4) to eliminate Zi. Thus we obtain 

5) 
L 

6, = - Dd,, i, = 1 (D%, +cz*~$,). 
Re &* Re 

(3.14) 

In order to obtain the equation of motion (3.12) in the h a 1  version used for the 
present work we substitute (3.11), (3.13) and (3.14), multiply by @*/Cs, and then 



1 a2 

substitute for a*6, in terms of Dv“, from a slightly rearranged version of (3.9). This 
gives 
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(2a* sin 0 - 3iD0, cos 0 )  - 
CL Re 

Dzw, &* 
sin 8 + [ (%-a*,) D6, + (cos ODD, + ia* sin 8) - 

(7% Re 

i(cosBDD,+iw*sinB)- D36,-i-sin8cosBD6, = 0. (3.15) 

1 
1 cos e a*!2 

(7% Re C% 

The Orr-Sommerfeld equation (3.5) together with the usual outer boundary 
conditions and the wall boundary conditions (3.9) and (3.15) define the appropriate 
eigenvalue problem ; &* is the complex eigenvalue and 6 the eigenfunction. Although 
(3.7) has been used in the derivation of (3.15) and (3.9) it is not imposed explicitly 
because for the linear problem the amplitude of the wall motion is arbitrary. 

4. Numerical Methods 
4.1. Integration of the Orr-Sommerfeld equation using a shooting method 

In order to perform en-type calculations a considerable amount of computing is 
required. This made it highly desirable to  have an efficient code for the numerical 
integration of the Orr-Sommerfeld equation (3.5). For this reason the shooting 
method described below was developed, despite our having access to computer codes 
based on other methods (see 54.3). 

The Orr-Sommerfeld equation (3.5) is recast as a system of four first-order 
ordinary differential equations for the complex eigenvector 

V = [v”, Dv”, D2d, D3v”IT. (4.1) 

(4.2) 

In a similar way the wall boundary conditions (3.9) and (3.15) can be rewritten in the 
form : A V = O  
where A is a 2 x 4 matrix with the elements A,,, A,, and A,, equal to zero and the 
remaining elements non-zero. 

There are four fundamental solutions, K(i = 1,. . . ,4), to (3.5), so its general 
solution may be written in the form V = Ci where repeated suffices imply 
summation from i = 1 to 4. At the wall we take V, = [I, 0, 0, 0IT, = [0,1,0, 0IT etc. 
However, two of the constants of integration, say C, and C,, can be eliminated by 
using the wall boundary conditions (4.2), ((3.9) and (3.15)). In  this way two linearly 
independent starting solutions can be derived which satisfy the wall boundary 
conditions and take the forms 

(4.3) 

This procedure is similar to that used by Yeo (1986, 1988). 
With the starting solutions specified by (4.3) the Orr-Sommerfeld equation (3.5) 

is integrated numerically across the boundary layer by using a fixed-step fourth- 
order Runge-Kutta method. The linear independence of is preserved by and 
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using Gram-Schmidt ortho-normalization when necessary (see Bellman & Kalaba 
1965). 

Beyond the edge of the boundary layer, here taken as g = Ye z 8, two ortho- 
normal fundamental solutions, may be constructed from the usual forms 
of the two exponentially decaying fundamental solutions in the free stream, namely 

exp(-lh*lg) and exp(-[&*2+iRe(ti*-6*)]ig). 

If the correct choice of eigenvalue has been made then the numerically constructed 
solution at  the edge of the boundary layer will match the free-stream solution so that 

and 

where the 6, are constants of integration. Note that the arbitrary choice of sign for 
-6, and is made for convenience in the definition of M below. 

= [el, . . . ) 6J) thereby indicating 
that the correct choice has been made for 6*, we require that 

In order to obtain a non-trivial solution for 

det (M) = 0 (4.5) 

where M =  [qCge), CCY~),  c ( g e ) ,  q(ge)lT. 
As in Carpenter & Garrad (1985), the method of false position is used as the 

iterative method for determining the value of ti* satisfying (4.5). 
The advantage of initiating the shooting scheme at the wall, rather than at the 

edge of the boundary layer, as is more common, is that it allows the Blasius equation 
to be integrated numerically along with the Orr-Sommerfeld equation using the 
same Runge-Kutta scheme. 

4.2. The en-type computations 
These computations are based on the en-method of transtion prediction developed 
originally by Smith & Gamberoni (1956), (see also Jaffe, Okamura & Smith 1970). 
The computations are initiated by choosing a non-dimensional frequency, 

and an initial value of Re just below that corresponding to the lower branch of the 
neutral curve at the chosen frequency. The computations advance in steps of Re 
equal to 50 until the upper branch of the neutral curve has been crossed. At each 
value of Re the shooting method together with the method of false position, as 
described above, is used to determine the complex eigenvalue ti*. Cubic splines are 
then fitted to the data pairs (Re, -uT) to obtain an interpolation function. The 
secant method is used to determine the two neutral points from this interpolation 
function. 

The total amplification rate a t  a given streamwise position, x, (or corresponding 
Reynolds number) of the Tollmien-Schlichting wave having the specified frequency 

where suffix i denotes the values on the lower branch of the neutral curve. Thus 6, 
denotes the initial amplitude of the disturbance while 6, denotes the value at the 
current value of x attained after amplification during the passage downstream of the 
TolimienSchlichting wave. The successive values of the integral in (4.7) as x (or 
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equivalently, Re) is increased step by step downstream are obtained by numerical 
quadrature. When the upper branch of the neutral curve has been passed a new value 
of frequency F is then chosen and the whole procedure repeated. 

The numerical-quadrature procedure is based on the analytical integration of the 
cubic splines over each Reynolds number interval of 50. This procedure was tested 
on functions with known exact integrals. The test functions chosen had a similar 
shape, maximum value and range as typical versus Re data. With the chosen 
value of 50 for the step in Re it was found that the integral could be evaluated to 
within a relative error of 0.1 % for a range from Re = 1400 to 2900. At higher values 
of Reynolds number the relative error is reduced. 
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4.3. The globally convergent scheme 
The shooting method described in $4.1 requires an initial guess for the eigenvalue. 
This is no great disadvantage in the case of the Tollmien-Schlichting instability 
mode for which it was usually possible to make a sufficiently informed guess for the 
first eigenvalue and use extrapolation thereafter. In the case of the travelling-wave- 
flutter instability it was usually necessary for the initial guess to be very close to the 
exact eigenvalue to obtain convergence. Again, though, this is not a problem because 
of the highly accurate approximate eigenvalues predicted by the asymptotic theory 
of Carpenter & Gajjar (1990) (see $55.1 and 5.5). Thus the shooting method and/or 
the asymptotic theory are more than adequate for dealing with two of the 
instabilities, but there remains the anxiety that other unsuspected instability modes 
may exist with the unusual wall properties under investigation. It is for this reason 
that we have extended the gIobaIIy convergent scheme of Bridges & Morris (1984) to 
the present case. Globally convergent schemes provide the complete eigenvalue 
spectrum, or a specified subset of it, without requiring an initial guess. 

A spectral Chebyshev Tau method is used to discretize the Orr-Sommerfeld 
equation (3.5) and the four boundary conditions. The problem is recast in much the 
same way as in $4.1 except that the semi-infinite gdomain is transformed to the finite 
domain - 1 < z < 1 using the algebraic transformation 

8-2 
y+2’ 

z=- 

Equation (3.5) is then integrated indefinitely four times with respect to z.  The 
eigenfunction is approximated by a finite Chebyshev series : 

N-1 

qz) = +Jo T, + x v, T,(z) (4.9) 

and the Blasius velocity profile O(z) is also expanded in a finite Chebyahev series. 
These series are then substituted into the indefinitely integrated version of (3.5) and 
the coefficients of each order of Chebyshev polynomial equated to zero. The four 
equations which contain the constants of integration, arising from the four-fold 
integration of (3.5), may be replaced by the four boundary condit,ions. The result is 
a matrix equation of the form : 

where D, is a N x N matrix of the form : 
(4.10) D, VN = 0, 

5 

D, = x Cta*6--i (4.11) 

and v, and Ci are N-dimensional vectors ; the former made u p  of the coefficients vi 
in (4.9). 

t-0 
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Five is the highest power of the eigenvalue ti* appearing in (4.11). This comes from 
the wall boundary condition (3.15). Thus i t  can be seen that the eigenvalue appears 
nonlinearly in the matrix discretization of the problem. Consequently standard 
algorithms cannot be applied directly. However, equation (4.10) may be transformed 
to an algebraic eigenvalue problem of order 5N. Since the QR algorithm requires 
computational times of order 4m3, where m is the order of the linear problem, it is 
clear that such a transformation requires a significant increase in computing time. 
However, (4.10) may be factorized using the matrix equivalent of synthetic division. 
This leads to an algebraic eigenvalue problem of order N .  

Since Co is singular it is convenient to shift the eigenvalue such that 

(4.12) 

Now eigenvalues close to s become dominant. Equation (4.11) may now be written 
as 

D5(A) = CtA5-+ = Q4(A)(/A- Y)+D,(Y). (4.13) 

Q4(h) is a lambda matrix of degree four and Y is the right solvent. This factorization 
is equivalent to solving the fifth-order matrix polynomial 

5 

i-0 

5 

D5(Y) = Ct Y5-g = 0. 
1-0 

(4.14) 

Bernoulli iteration may be used to find either the minimal or dominant solvent of 
(4.14), as described by Bridges & Morris (1984), but the convergence may be slow. 
Dennis, Traub & Weber (1978) give an improved algorithm for the solvents of matrix 
polynomials. The application of this scheme to problems in hydrodynamic stability 
is described in Morris (1986). In  the present case it has been found computationally 
efficient to obtain first a rough approximation to the eigenvalue spectrum using the 
first Bernoulli iteration step, namely 

Y x -e;1e1. (4.15) 

A cubically convergent, local-iteration scheme may then be used to refine the 
accuracy of selected eigenvalues. The details are given in Bridges & Morris (1984) and 
Morris ( 1986). 

In  the present case the global schemes were used to check that the Tollmien- 
Schlichting, travelling-wave flutter and divergence instabilities were the only 
unstable discrete eigenmodes present. This has been confirmed by the calculations to 
be presented in $6.1. However, a previously unreported anomalous discrete 
eigenmode, which would be unstable according to conventional interpretation, was 
identified and elucidated. This demonstrates the value of the global schemes for 
tracing eigenvalues in new or complex problems. 

4.4. Checking numerical methods by comparison with previous results 
It is important to ensure that the numerical schemes are accurate and free from 
error. The question of accuracy is of more than academic interest here because, 
generally, in order to achieve comparable accuracy in the case of the compliant wall 
a considerably smaller step in 9 is required as compared to the rigid wall. This 
problem seems to be exacerbated by the introduction of anisotropic wall compliance. 
Thus in order to ensure that the results reflect the nature of the theoretical model 
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under study, rather than numerical inaccuracy, the various numerical schemes were 
carefully checked. 

The eigenvalues for the rigid wall, computed using the shooting method with 200 
steps, agree to five significant places with values supplied by M. Gaster (1988, private 
communication) at  Re = 1500. Gaster’s code employed the compound-matrix method 
together with a fixed-step Runge-Kutta scheme. He integrated over 500 steps out to 
a value of the Blasius coordinate equal to 10.0 (Q x 9.67). We took 200 steps out to 
8.0. This agreement between quite different methods is clearly satisfactory. We also 
obtained exact agreement with Jordinson’s (1970) coordinates for the neutral- 
stability curve. Finally, as a check on the en-type calculations we calculated the 
value of n corresponding to Re = 2900 and non-dimensional frequency F = 
28.5 x We obtained n = 8.28, in exact agreement with Yeo (1986) and close to 
the value of 8.3 obtained by Jaffe et al. (1970). 

Plainly our rigid-wall computations have been tested satisfactorily. In the case of 
the compliant wall, especially the anisotropic one, it is not so easy to test the codes 
since there are few established results. Fortunately, we had several completely 
different methods at  our disposal to check against one another. In addition to the 
shooting method we also had the spectral code used for the globally convergent 
scheme and the accurate asymptotic theory of Carpenter & Gajjar (1990). For a 
typical anisotropic compliant wall it was found that 500 steps were required with the 
shooting method to obtain an accuracy comparable to that obtained with 200 steps 
for the rigid wall. To obtain comparable accuracy with the spectral code, 65 to 70 
Chebyshev polynomials were required. The reason why the compliant walls required 
this considerably greater number of steps is not completely clear. It probably reflects 
the nature of the boundary condition (3.15) which contains higher derivatives of the 
eigenfunction. These higher derivatives stem originally from the expressions (3.13) 
and (3.14) for the fluctuating wall pressure and shear stress respectively. 

5. The asymptotic theory and its implications 
5.1. Asymptotic theory 

An asymptotic theory for the hydroelastic or ‘inviscid’ instability modes of a 
boundary layer over anisotropic compliant walls is presented in Carpenter & Gajjar 
(1990). This theory is based in part on the concepts of Miles (1957, 1959a, b,  1962) 
and Benjamin (1959, 1963). Here an outline of the theory is given. The two main 
hydroelastic modes, namely divergence and travelling-wave flutter, have their 
origins in the two branches of the free-wave modes shown in figure 4. Thus the 
hydroelastic modes are fundamentally instabilities in the wall. This fact is exploited 
by using the equation (3.12) for the wall motion as the eigenvalue equation. This can 
be done provided suitable expressions can be found for the forcing terms due to the 
unsteady fluid flow. The derivation of these expressions is briefly described below. It 
should be emphasized that this theory and the resulting expressions for fluctuating 
wall pressure and viscous stresses are perfectly general, in that they apply equally 
well to any type of compliant wall, including the isotropic and anisotropic cases 
studied by Yeo (1986, 1988, 1990) and others. Moreover much of the physical 
interpretation arising from the theory also applies qualitatively to the Tollmien- 
Schlichting instability (TSI). 

Let the small parameter for the theory be defined by 

(5.1) 
1 

8 =Re+. 
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FIGURE 5. Schematic sketch of the multideck boundary-layer structure assumed for the asymptotic 
theory. 13: is the boundary-layer displacement thickness at a fixed value of x, and h is a reference 
length of the same order of magnitude as the disturbance wavelength. 

By rearranging the linearized y-momentum equation (3.3) and integrating with 
respect to @j it can be shown that the amplitude of the fluctuating wall pressure is 
given by 

I;, = iZ*[om (U-q6d$i+O(e2). (5.2) 

Note that here it is convenient to use the phase speed F = @*/a* as a parameter 
rather than 8. 

In order to evaluate (5.2) and expressions (3.14) for the fluctuating viscous stresses 
at the wall, so that (3.12) may be used as an eigenvalue equation, asymptotic 
solutions of the linearized Navier-Stckes equations a t  high Reynolds number are 
required for 4. (To O(e) the linearized Navier-Stokes equations are equivalent to the 
Orr-Sommerfeld equation (3.5).) These are obtained by exploiting the multideck 
structure of the boundary layer depicted in figure 5.  It is assumed that the critical 
and wall layers, where viscous effects are important, are well separated. It is shown 
in Carpenter & Gajjar (1990) that the viscous effects in the critical layer do not affect 
the values of $w or f ,  to O(s). Accordingly, viscous effects are ignored everywhere 
outside the wall layer. It is essential, however, that the phase jump across the critical 
layer be retained. Carpenter & Gajjar (1990) showed that an appropriate 'composite ' 
asymptotic solution for G, omitting the viscous effects in the critical layer, may be 
written as 8 = C,Gl+C,GV 

= c,(U- F )  e-l"'lV(i - I E * ~  + C, exp ( -e++j) + o(E), (5.3) 

where C,  and C, are constants of integration, g = @j(Z*i$/e, and 

(5.4) 

FLM 218 
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FIGURE 6. Variation of Gmlr (-) and Gmlt (----) with 4. 

The first term on the right-hand side of (5.3) is the inviscid part of the solution and 
is essentially the same as that given by Benjamin (1959, 1963). The second term 
represents the viscous correction for the wall layer. The constants of integration, C, 
and C,, are evaluated by satisfying the boundary conditions (3.7) and (3.8) at the 
wall and are given by 

c, = c,, + EC,,, c, = €cell, 
c - ' - * A *  where 10 - 'a 7 

and 

For the present two-dimensional case .Ci may be readily derived from .; using the 
continuity equation (3.4). See Carpenter & Gajjar (1990) for further details. 

With C, and C, evaluated, (5.3) can be used to obtain the following expression for 
5,: 

r;, =-(E*I(l-C),rj*--E*2 rj* 

where H is the ratio of the boundary-layer displacement thickness to momentum 
thickness (for the Blasius velocity profile H = 2.591), and where 

(=  @lmr+i@,,i) is a complex quantity when 0 < cr < 1, and in this case 
becomes a singular integral. It is evaluated by using a contour comprising the real 
g-axis except for a semicircular indentation of infinitesimal radius under the critical 
point, gc where l7 = 4. The real and imaginary parts of Qlm, Glmr and almi are 
plotted against cr in figure 6. 
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Deformed surface 

*,....".' 7' Deformed surface 
1 .  I /  
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FIQURE 7. Schematic sketch showing the mode of surface deformation and defining notation for 
a more general fibre-composite anisotropic compliant wall. 

The asymptotic solution (5.3) can also be used to obtain expressions from (3.14) for 
the fluctuating viscous stresses a t  the wall. These take the forms 

6, = 2&*e2(-c%*E[*+iDUwi*), (5.7) 

From (5.7) i t  can be seen that 6, is clearly a higher-order term and i t  is accordingly, 
dropped in what follows. 

Interpolation functions describing Glmr and Glmi as functions of cr are given in 
Carpenter & Gajjar (1990). When use is made of these, together with (5.5) and (5.8), 
the equation (3 .12)  of motion for the wall becomes a straightforward algebraic 
eigenvalue equation for a*. This equation can be solved for Z* by means of standard 
techniques a t  a minute fraction of the computing cost required for solutions of the 
full Orr-Sommerfeld equation. The results so obtained are found in Carpenter & 
Gajjar (1990) to be extremely accurate. 

It is convenient for general applications to  decompose the wall displacement into 
a component, &, parallel to the equilibrium position of the fibres and qr perpendicular 
to  the fibres. See figure 7. Note that &would be identically zero for the theoretical 
model described in 92 and figure 2 .  However, for more general models of the type of 
fibre-composite anisotropic wall illustrated in figure 3 and studied by Yeo (1986, 
1990), both & and rr would generally be non-zero. Yeo presents figures showing 
displacement orbits like that depicted in figure 7 and i t  is clear from these that the 
phase of & lags that of T,+ by a factor of in, so that 

tf = -if% 
where f is a positive real number. Note that the actual value o f f  can only be 
determined from a full solution to the coupled flow/wall problem. 

7-2 
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The vertical and horizontal wall displacements are related to Er and T~ as follows : 

;i* = r j :cos~-@sin~ = rj:(cose+ifsin8), 

& = rj:sine+E:cos8 = rj:(sino-ifcos8), 

where the form and non-dimensionalization assumed for & and T~ are similar to those 
for and 7. 

Usually it can be assumed that f 4 1 so that 

@ (1 -fz) sin 8 cos 8- ;f if 
f *  cos2 8 + f sin2 8 cos2 8 .  

- tan8-- - - _  (5.9) 

This is not an essential simplification in what follows but aids physical interpretation. 
The theoretical model of $2 and figure 2 corresponds tof = 0. In  all the cases studied 
by Yeo (1986, 1990) f 4 1 .  The stiffer the fibres compared to the softer matrix the 
smaller isf. 

5.2. Inviscid equivalence between anisotropic and isotropic compliant walls 

There are two main types of hydroelastic, or flow-induced, surface instabilities, 
namely divergence and travelling-wave $utter (TWF). In both cases the primary 
mechanism of destabilization is essentially inviscid. Viscous effects are thought to be 
insignificant for divergence but this still remains to be established properly. As 
shown in $5.4 and by the results presented in $5.5, viscous effects are not insignificant 
for TWF. Even so they come into play a t  higher order. Accordingly it is worthwhile 
to see if it  is possible to make any general statements about the behaviour of these 
instabilities over anisotropic walls in the absence of viscosity. 

When viscosity is ignored the two viscous-stress terms, 6,+, and $w, in (3.12) are 
both zero. Also the expression (5.6) for the wall pressure, @w, becomes identical for 
both anisotropic and isotropic compliant walls. It follows, therefore, with use of the 
expression (2.5) for the free-wave speed, that in the absence of viscosity the equation 
of motion (3.12) for the anisotropic wall will be identical to that for an isostropic wall 
having the properties 

BE = B, T, = E b  tan28, K,, = K,/cos2B, bE = bcos28, (5.10) 

where suffix E has been used to denote the property of the equivalent isotropic wall. 
It has been assumed in deriving (5.10) that the material density, pm is the same in 
both cases. It is also assumed that the flow properties remain unchanged. 

The equivalent properties given by (5.10) can be used to extend the results derived 
in Garrad & Carpenter (1982), Carpenter & Garrad (1986) and Yeo & Dowling (1987) 
to anisotropic compliant walls. Thus for the onset of divergence the critical 
wavenumber and flow speed are found by substituting (5.10) into equations (2.10) 
and (2.11) of Carpenter & Garrad (1986) and are given by 

[(Eb tan2 8)z  + 12BK,/cos2 O]$-Eb tan2 8 
6B 

( 5 . 1 1 ~ )  

(5.1 1 b) 
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Similarly, equations (3.6) and (3.7) of Carpenter & Garrad (1986) for the TWF over 
a non-dissipative compliant wall can be extended to the anisotropic case to read 

2(BK,/cos2 O)i+Eb tan28 

bp,  cos2 8 I *  UCB = 

(5.12 a )  

(5.12 b) 

Equations (5.11) and (5.12) are used to derive optimal wall properties in the next 
section. The results presented in $5.5 suggest that (5.12) is rather conservative for 
anisotropic walls ; but it will always hold in the limit Re -+ 03. Consequently, unless 
otherwise specified, both (5.11) and (5.12) have been used to predict the onset speeds 
for the hydroelastic instabilities throughout the present paper. 

5.3. Optimal wall properties 
The more compliant a wall the greater is the stabilizing effect on the TSI. See, for 
example, figure 11 of Carpenter & Garrad (1985). Also the greater the inertial mass 
of the wall the greater is the stabilizing effect on the TSI. This was demonstrated by 
Carpenter (1985 b)  and Willis (1986). What limits the performance of a compliant 
wall in the linear regime of transition is the occurrence of the hydroelastic, or flow- 
induced surface instabilities. Essentially, as shown by (5.1 1 )  and (5.12), increased 
compliance through smaller values of E ,  B or K ,  leads to lower values of the critical 
speeds for divergence and TWF, while a rise in the inertial mass (i.e. bp,) leads to a 
lower critical speed for the TWF. Note that, despite the appearance of the factor 
(bp,); in (5.11b), the critical speed of divergence does not, in fact, depend on bp,  
because of cancellation with the same factor contained in co (see (2.5)). It is argued 
here that the optimal wall properties for any type of compliant wall must correspond 
to marginal stability at  infinite Reynolds number with respect to the two main 
hydroelastic instabilities. Plainly, if the wall were any more compliant or heavier 
than this, hydroelastic instability would set in when a certain Reynolds number was 
reached and, thereby, possibly make transition delay impossible to achieve. On the 
other hand if the wall were any less compliant or lighter, performance in terms of 
transition delay would be sacrificed. It could be argued that requiring marginal 
stability at  infinite Reynolds number is unnecessarily conservative. This may be so 
in some cases. But the instability mechanisms for the hydroelastic instabilities are 
essentially inviscid so the choice of infinite Reynolds number is not unreasonable. 
The question of reducing the value required for the Reynolds number corresponding 
to marginal hydroelastic stability is briefly discussed in $ 6.2. The above procedure 
for deriving optimal wall properties is not mathematically rigorous, but it is argued 
here that it makes good sense on physical grounds. J o s h  &, Morris (1989) have 
developed numerical procedures for determining the optimal wall properties for 
anisotropic compliant walls. Their results are close in value to those obtained by 
following the procedure outlined above. 

Restricting the wall properties to those that are marginally stable with respect to 
the hydroelastic modes at infinite Reynolds number reduces the number of wall 
parameters very considerably. It is important to understand, however, that one or 
more parameters remain to be varied to achieve the best performance, according to 
some suitable criterion, with respect to the TSI. The restricted set of wall properties 
corresponding to marginal hydroelastic stability will be derived below for a non- 
dissipative compliant wall. 



192 P .  W .  Carpenter and P .  J .  Morris 

Any reduction in the number of wall parameters is certainly very helpful. There is, 
however, a more important advantage to be gained from using optimal wall 
properties when investigating the effects of anisotropic wall compliance. When an 
anisotropic compliant wall is compared with an isotropic one the results can be 
misleading if the degree of hydroelastic stability or instability is different in the two 
cases. The use of optimal wall properties ensures that the comparative study of the 
effects of anisotropic wall compliance on the growth of the TSI in the linear regime 
of transition is carried out on a proper basis. 

To derive the optimal wall properties we first require that the critical speed for the 
onset of divergence be equal to the free-stream speed, thus ensuring marginal 
stability for divergence. From (5.11 b )  setting Ud = U,  leads, with use of (2.5), to the 
following relationship : 

= pv,. Bai + Ebu, tan2 0 + KE 
ad cos2 0 

(5.13) 

Also (5.11 a )  is rearranged to  obtain a second relationship of the form 

3Ba: + Eba; tan2 0 - K,/cos2 0 = 0. (5.14) 

Eliminating K ,  between (5.13) and (5.14) leads to 

Similarly when B is eliminated the result is 

KE = $pV, ad - iEbai tan2 0.  

(5.15) 

(5.16) 

At this stage non-dimensional wall parameters are introduced. I n  order for the 
parameters to be invariant with x (or 6*) the quantity v /U ,  is used as the reference 
length to obtain the following: 

(5.17) 

Using the definition (2.3) of flexural rigidity we can write 

(5.18) 

Substitution of (5.18) and use of the definitions (5.17) allow (5.15) and (5.16) to be 
rearranged in the non-dimensional forms 

12(1- v:) B 
b2 

Eb = 

(5.19) 

(5.20) 

Now it is required that the surface also be marginally stable with respect to TWF 
so that U,, = U ,  in (5.12b). With use of (5.17) and substitution of (5.18), equation 
(5.12b) can be written in the non-dimensional form 

1 ( P2 CL 
c a 2  

C K ,  = &-6(1-vg)h-tan26 eos20. 

(5.21) 
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FIGURE 8. Amplitudes of disturbance for TSI corresponding to greatest growth rate at Re = 2240. 
In each case the material and fluid densities are 1000 kg/m3, the Poisson ratio equals 0.5 and the 
wall parameter Ed = 5 8 . 9 3 ~  (see (5.17)). -, 8 = 0 (E* = 0.1896-0.00482i, a* = 0.0651); 
_ _ -  , 8 = 60" (E* = 0.1521-0.00317i, a* = 0.0528); ....., 8 = -60' (a* = 0.1476-O0.O0559i, 
a* = 0.05). The wall properties are as in table 2 for U ,  = 20 m/s. (The data were supplied by 
R. 1). Joslin of Pennsylvania State University.) 

The set of three equations (5.19)-(5.21) define the optimal wall properties for a 
non-dissipative compliant wall. For a fixed value of 8 (tacitly assuming that p,/p 
and v p  are also fixed) the three equations allow the wall parameters C,, CK, and CM 
to be obtained in terms of a single wall parameter Ed. The procedure adopted is quite 
straightforward. Equation (5.21) is solved by trial and error for CM with (5.19) and 
(5.20) being used to evaluate C, and CK, for the trial value of C,. In this way a two- 
parameter family of anisotropic walls is derived which are marginally stable at 
infinite Reynolds number with respect to divergence and TWF. The two parameters 
are Ed, the non-dimensional critical wavenumber for divergence, and 8, the fibre 
angle. 

Are the actual dimensional values of the optimal wall properties practically 
realizable ? The answer to this question is postponed to $6.2 where the values of Cia, 
corresponding to the greatest reduction in TSI growth rate according to certain 
criteria, are determined for various values of 8. 

5.4. Mechanisms for stabilization and destabilization 

The theory outlined in $5.1 is useful for providing estimates of the eigenvalues for 
TWP. Its real value, however, lies in the insights it gives into the underlying physical 
mechanisms for stabilization and destabilization. When used in this way it applies 
equally well to the TSI, albeit only qualitatively. We know from the Landahl 
(1962)-Benjamin (1963) energy-classification scheme (see also Carpenter & Garrad 
1986) that irreversible energy transfer to/from the wall will exercise a stabiliz- 
ing/destabilizing influence on the Class A TSI and a destabilizing/stabilizing 
influence on the Class B TWF. By comparing the forms of the eigenfunctions ( G )  
shown in figures 8 and 9 it can be seen that the TSI is fundamentally a flow 
instability with its maximum amplitude located well above the critical point, gc, 
where 0 = cr, whereas TWF is fundamentally an instability in the wall with its 
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FIGURE 9. Amplitudes of disturbance velocities for TWF instability at Re = 2240. In each case the 
material and fluid densities are 1000 kg/m3, the Poisson ratio equals 0.5, the wall parameter ad = 
58.93~10-~(see(.5.17))andij*=0.14.--- ,0= 6O0(a*=0.1O5+O.00141i); ....., 0 = - 6 0 ° ( a * =  
0.105+0.00139i). The wall properties are as in table 2 for U ,  = 20 m/s. (The data were supplied 
by R. D. J o s h  of Pennsylvania State University.) 

maximum amplitude at the wall itself. This distinction also explains why the transfer 
of energy to the wall will decrease the growth of TSI but increase that of the TWF. 

Many mechanisms for irreversible energy transfer are possible for compliant walls, 
namely : 

Energy transfer within the flow field: 

energy production by Reynolds shear stress ; 
viscous dissipation ; 
energy transfer from the disturbance to the mean flow due to the interaction 
between the displaced mean flow and fluctuating viscous shear stress. 

Energy transfer to/from the wall: 
irreversible work done by the wall pressure fluctuations ; 
irreversible work done by the wall shear-stress fluctuations ; 
damping in the wall. 
The contributions of the various energy- transfer mechanisms can be seen more 

explicitly in the integral energy equations for the flow and wall. This approach is 
somewhat different from that of Landahl and Benjamin and was originally inspired 
by the use of the energy integral equation by Stuart (1958). We were also greatly 
influenced by the recent work of Domaradski & Metcalfe (1987) who studied the 
energy balance for disturbances developing over spring-backed membrane surfaces. 

For the case of two-dimensional temporally growing disturbances these equations 
can be written in the following forms: 

(5.23) 
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where an overbar denotes an average over a cycle, u1 and u2 are used for u and v ,  crU 
denotes the various components of the viscous stress tensor, E ,  and E,  denote the 
disturbance mean kinetic and strain energies in the wall and D ,  denotes the rate of 
irreversible energy loss due to damping in the wall. Repeated suffices are to be 
interpreted as implying summation from 1 to 2. The forms of (5.22) and (5.23) are 
only valid if the amplitudes of the instantaneous disturbance kinetic energy in the 
flow and the total disturbance energy in the wall are held fixed with respect to time. 
Accordingly, in order to make meaningful comparisons of the sizes of the various 
terms in (15.22) and (15.23) the normalization condition adopted requires the 
disturbance kinetic-energy integral in the flow to be set equal to unity. 

The energy equations and analysis developed below, like the asymptotic theory 
outlined in $5.1, apply equally well to general anisotropic compliant walls, including 
those studied by Yeo (1986, 1990). For the surface-based model described in $2, E,  
and E,  can be readily derived from the equation of motion and are not integral 
quantities. For the more general volume-based models, including Yeo's, E ,  and 
Es would have to be obtained by carrying out integration across the various layers 
of the compliant wall. 

The energy equations have been derived for the case of temporally, rather than 
spatially, growing disturbances. It is perfectly possible to derive an equivalent 
equation for spatially growing disturbances in the boundary layer (see, for example, 
Morris 1976). But difficulties arise when comparisons are made between the energy 
equations in the flow and in the wall for the spatially growing case. What, for 
example, is the equivalent quantity for the wall to kinetic-energy flux in the flow ? 

Some of the terms in (5.22) and (5.23) may require further explanation. The term 
on the left-hand side of (5.22) represents the rate of change of the integral of the 
kinetic energy of the disturbance in the boundary layer. Since temporally growing 
disturbances are being assumed for the energy analysis the wavenumber a in (3.1) 
becomes purely real and the frequency, w (=  w,+io,), becomes complex, so that wi 
is now the temporal growth rate. This allows the time derivative of kinetic energy to 
be replaced by the factor 20,. The first two terms on the right-hand side of (5.22) are 
respectively the rate of production of disturbance energy by the Reynolds shear 
stress and the viscous dissipation rate. These terms would be present for the rigid 
wall. They are followed by three terms representing the rate of irreversible work done 
to the wall by fluctuations in pressure and viscous direct and shear stresses. 

The final term represents irreversible energy transfer from the disturbance to the 
mean flow arising from the interaction of the displaced mean flow and shear stress. 
To some extent this term is a consequence of the definition adopted for the mean 
flow. The problem has been formulated so that the Blasius profile represents the 
mean flow. Consequently, on the wall itself the mean flow takes the instantaneous 
value of DOw $* and, accordingly, is not slowly varying there but, rather, fluctuates 
on the same timescale as the disturbance. Evidently, there is a problem in 
distinguishing the mean flow from the disturbance for flow over compliant 
boundaries. It has not yet been possible to establish for certain whether or not this 
term is always opposite in sign to the production term. The result given below, based 
on the asymptotic theory, suggests that for certain wall properties it could change 
sign and give rise to additional energy production. 

Figure 10 compares the relative size of the various contributions to the energy 
equation (5.22) for the TSI over an isotropic compliant wall and anisotropic 
compliant walls with B = +60". In each case the various contributions have been 
normalized by setting the disturbance kinetic-energy integral to unity and (5.22) and 
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FIQURE 10. Comparisons of the sizes of various terms in the integral energy equation for temporally 
growing Tollmien-Schlichting waves at  Re = 2240. The notation is as follows : P, production by the 
Reynolds stress; D, viscous dissipation; R, removal of energy due to interaction of wall shear stress 
with displaced mean flow ; PW, work done by pressure at the wall; SW, work done by shear stress 
at the wall. (a) A comparison between the rigid and isotropic compliant walls. The left-hand 
columns correspond to the rigid wall (a* = 0.215, i j*  = 0.065+0.00426i) and the ones on the right 
to the compliant wall (ti* = 0,190, i j*  = 0.0651 +O.O0154i). (b) A comparison between an isotropic 
and two anisotropic compliant walls. The left-hand columns correspond to the isotropic case of (a), 
the middle ones to 0 = 60' (a* = 0.152, ij* = 0.0528+0.00124i), and the right-hand ones to 
8 = -60" (a* = 0.148, ij* = 0.0500+0.002 12i). (c) A comparison between the total disturbance 
energy in the wall as a proportion of the total disturbance kinetic energy in the flow. The columns 
correspond to the same cases as (b) .  In all cases the data have been normalized by setting the 
disturbance kinetic-energy integral equal to unity, the wavenumber was chosen to be close to the 
value corresponding to maximum spatial growth rate and the wall properties are as figure 8. (The 
data were supplied by R. D. Joslin of Pennsylvania State University.) 

(5.23) are both satisfied to a t  least three significant figures. In  all three cases the wall 
properties are optimal in the sense of $5.3 (the values of the properties will be given 
in $6.2, see table 2) and the wavenumbers chosen to  be close to the values 
corresponding to maximum instability growth rate a t  the given Reynolds number of 
2240. The energy transfer due to work done by the direct viscous stress does not 
appear in figure 10. It is negligible compared to the other terms. This is to be 
expected since it has been found in the past that omitting this term from (2.4), and 
hence from (3.12), has a negligible effect on the eigenvalue. Note from figure 10 that  
the contribution of the energy-removal term, due to the interaction of the dispIaced 
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Change in energy-transfer rate 

Anisotropic vs. 
isotropic wall 

Non-zero f Energy -transfer Isotropic 
mechanism vs, rigid wall B < 0 e > o  vs . f=O 

P in viscous wall layer Rises Rises Falls Falls 
P across rest of the flow Falls Rises Falls Unknown 
D Falls Falls Falls Unknown 
R Rises Rises Falls Falls 
PW Rises Falls Rises Rises 
SW for TSI Zero Rises Falls Falls 
SW for TWF Zero Falls Falls Rises if 0 > 0 

FJls if B < 0 

TABLE 1. A summary of the effects of isotropic and anisotropic wall compliance on the various 
energy-transfer mechanisms. The abbreviations P etc. for the energy-transfer mechanisms in the 
first column are defined in figure 10. Using the second column as an example, the entries in those 
columns, describing the change in energy-transfer rate, should be interpreted as meaning that the 
energy-transfer rate rises/falls for an isotropic compliant wall compared with the rate 
corresponding to the rigid wall and so on. The entry zero means that the energy-transfer rate is zero 
for that case, and the entry unknown implies that the present study has not provided the required 
information. The column on the extreme right provides information about the effects of wall 
deformation parallel to the fibre direction. 

mean flow and the shear stress, is surprisingly large. This is very much in line with 
the results of Domaradski & Metcalfe (1987). Note also that for the TSI about 10 % 
of the total energy resides in the wall. 

Table 1 gives a summary of how the various energy-transfer mechanisms are 
affected by isotropic and anisotropic wall compliance. The effects of non-zero f, that 
is the effects of wall movement parallel to the fibre direction, are also included in the 
table. The results are based on the numerical results presented in figure 10 and on the 
asymptotic analysis given below for the various energy-transfer mechanisms. The 
TWF is apparently unaffected by energy transfer within the flow field, but is 
destabilized by energy transfer to the wall. The TSI, in contrast, is destabilized by 
energy transfer to the disturbances within the flow field but stabilized by energy 
transfer to the wall. Subject to these rules the balance achieved between the various 
competing energy-transfer mechanisms determines the overafi effect of isotropic or 
anisotropic wall compliance on boundary -layer instability. 

Energy production by  the Reynolds shear stress 

This is the primary mechanism responsible for destabilization of the TSI in 
boundary layer over rigid walls. In the absence of viscosity the normal and 
streamwise disturbance-velocity components are in anti-phase, thereby rendering 
the Reynolds stress zero. As originally postulated by Prandtl (1921), the effects of 
viscosity, especially in the critical layer, bring about the essential phase shift 
between the disturbance-velocity components, thereby creating non-zero Reynolds 
stress. This effect is still present for compliant walls. The generation of reduced, or 
even negative, Reynolds stress in the viscous wall layer might appear to be a 
plausible explanation for the stabilizing influence exercised by wall compliance on 
the TSI. It turns out, instead, that isotropic wall compliance actually increases the 
magnitude of the Reynolds stress near the wall. This is demonstrated below ; see also 
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FIGURE 11.  Distributions across the boundary layer of the production rate (P) of disturbance 
energy due to the Reynolds stress and viscous dissipation rate (D). Both quantities are normalized 
by setting the disturbance kinetic-energy integral in the flow equal to unity. (a) A comparison 
between the rigid and isotropic compliant walls : -, rigid wall ; ---, isotropic compliant wall. ( b )  
A comparison between an isotropic and two anisotropic compliant walls : -, 0 = 0 ; ---, 0 = 60’ ; 
..... , 0 = -60’. Conditions and wall properties are as figure 8. (The data were supplied by R. D. 
Joslin of Pennsylvania State University.) 

Domaradski & Metcalfe (1987) and Willis (1986). Even for the anisotropic compliant 
wall with a positive fibre angle there is only a minute region near the wall with 
negative energy production by the Reynolds stresses. This can be clearly seen from 
the distributions of normalized --DO presented in figure 11,  where results for the 
rigid and isotropic compliant walls are compared with those for anisotropic 
compliant walls with positive and negative fibre angles. These results are in 
agreement qualitatively with those of Yeo (1986, 1990). 

It would appear at  first sight, then, as concluded by Yeo, that the reduction of 
energy production by the Reynolds shear stress near the wall at  best plays a 
relatively minor role even for anisotropic wall compliance. It will be noted, however, 
in figure 1 1 that, with the exception of the viscous wall layer, the energy production 
by Reynolds shear stress across most of the boundary layer is considerably lower for 
the compliant walls than the rigid surface. This is reflected in the values of integrated 
energy production presented in figure 10. The asymptotic theory can shed little or no 
light on the energy production by Reynolds shear stress in the critical layer, which 
is the primary destabilizing mechanism for the TSI. But the theory can be used to 
elucidate the effects of wall compliance, including the observations made above, on 
the production of energy by Reynolds shear stress in the viscous wall layer. This is 
done below. It is important to remember, however, that the contributions to the 
Reynolds shear stress, which are identified below, are supplementary to the primary 
source of energy production in the critical layer. 

The Reynolds shear stress averaged over a cycle is given by 

where ( )+ denotes the complex conjugate. Ignoring Ef, (5.3) can be used with (5.9) 
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to show that to a good approximation the non-dimensional Reynolds stress within 
the viscous wall layer is given by 

(5.24) 

At a fundamental level the explanation for the effect of wall compliance on the 
Reynolds shear stress would appear to lie with the local and long-range effects of the 
compliant-wall boundary conditions. In the form given in (5.3) the disturbance 
velocity is decomposed into a part involving an essentially inviscid fundamental 
solution and a part involving a viscous wall-layer solution. From this form of the 
disturbance velocity it can be seen that through the viscous correction C,, to the 
constant of integration C, in (5.3) the viscous effects at the wall influence the 
disturbance velocity throughout the bulk of the boundary layer. This suggests a 
mechanism whereby wall compliance may exercise a long-range influence possibly 
leading to reduced Reynolds stress, and therefore reduced energy production, across 
the bulk of the boundary layer, as found in figure 11. Unfortunately, since viscous 
effects are ignored outside the wall layer the present theory cannot be used to 
estimate the Reynolds stress outside of that region. It would appear from figure 11, 
though, that the beneficial long-range influence of wall compliance on energy 
production by the Reynolds stress is enhanced by anisotropic wall compliance when 
0 > 0 but impaired when 0 < 0. 

Irreversible energy transfer between the disturbance and the mean flow 
This is due to the interaction of the displaced meFn flow and the fluctuating shear 

stress. Substituting from (5.8) for tw and (5.9) for [*I$* and disregarding a:, it can 
be shown that for GW = 1 (+* = i/O*) this term takes the form 

(5.25) 

Irreversible work done to the wall by the fluctuating pressure 
This is the primary mechanism whereby TWF is destabilized over isotropic 

compliant walls. Again, a phase shift in the disturbance velocity plays an essential 
role. In the absence of a shear layer the wall pressure would be given by the first term 
on the right-hand side of (5.6). Thus it can be seen that the pressure would be in 
antiphase with the normal velocity at  the wall. Irreversible work by the fluctuating 
wall pressure would be zero under these circumstances. The essential phase shift 
occurs across the critical layer and its sign and value is determined by the term 
involving > 0 then the energy transfer will be to the wall. As 
can be seen from figure 6, is positive between cr = 0 and 1 and zero for all other 
values. Thus the work done by the fluctuating wall pressure is destabilizing to the 
Class B TWF, when its phase speed falls below U,, and stabilizing to TSI. This 
mechanism was originally identified by Miles (1957, 1959a, b, 1962) in connection 
with water waves. His concepts were applied to compliant surfaces by Benjamin 
(1959, 1963). 

in (5.6). If 
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F~QURE 12. Distributions of (U-QG, across the boundary layer for the TSI instability. Key, 
conditions and wall properties are as figure 8. (The data were supplied by R. D. J o s h  of 
Pennsylvania State University.) 

The irreversible work done by wall pressure is given by 

-Re(&$) - Re(iB*$,$*) = -Im(ij*$,i*). 

Thus the sign of the imaginary part of the righbhand side of (5.6) determines whether 
or not the energy transfer is to or from the wall. With use of (5.9) this imaginary part 
is given by 

a?*( 1 - i$) qmi $* -___ €ay (1-Er) 9 A* { (' iCrl2 tan O}. (5.26) 
(2a; Cr$ cos2 e 

The first term of (5.26) corresponds to the essentially inviscid mechanism described 
above. The second O ( E )  term represents the effect of an additional phase shift which 
occurs across the viscous wall layer. Anisotropic wall compliance modifies the viscous 
effect but leaves the essentially primary inviscid mechanism unaffected. Since the 
TWF instability sets in when cr w 1 the magnitude of the O(s)  terms in (5.26) is very 
small near the critical condition unless f is relatively large. Consequently one would 
not expect the O ( E )  effects to  be a t  all significant for the TWF. 

The analysis given above, which was based on the asymptotic theory, is confirmed 
by comparing the distributions of ( 0-c,.) Gi corresponding to  the TSI which are 
plotted in figure 12. From (5.2) we see that it is the integral of this quantity across 
the boundary layer that determines the sign of the imaginary part of the fluctuating 
wall pressure. The distributions in figure 12 indicate that energy transfer due to the 
work done by the fluctuating wall pressure is possible for the TSI, as shown also by 
the results in figure 10. A comparison with figure 10 of Carpenter & Gajjar (1990) 
suggests that the effect is smaller than, but of the same order as, that  for TWF. The 
results of figure 10, however, suggest that  i t  is a relatively unimportant effect. Figure 
10 also suggests that the effect of fluctuating shear stress is relatively unimportant. 
In this case i t  is fairly easy to investigate the effect on the TSI of removing the shear 
stress from (3.12) (see figure 20 and $6.2), and in this way it has been established that, 
in fact, the effect is very significant. For this reason it is suggested that the relative 
size of the pressure and shear-stress work terms in (5.22) and figure 10 may be 
somewhat misleading when used as a guide to  their relative importance for 
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stabilizing/destabilizing the TSI. Accordingly it is concluded here that the pressure- 
work mechanism is probably also important for the stabilization of TSI by wall 
compliance. Moreover, this mechanism is also partly responsible for the fact that 
anisotropic wall compliance may enhance or impair stabilization of the TSI 
depending on the sign of the fibre angle, 6. Note especially the proportionately larger 
negative contribution to lom (0- c,) Gi dg 

from the wall region for 6' < 0 as compared to 6' > 0 in figure 12. 

Irreversible work to the wall by the Jluctuating shear stress 
This is given by 

Re (+i) - -Re (iis*@) = Im (is*;@). 

Now the irreversible energy transfer will be to/from the wall according as to whether 
the sign of Im($g*) is negative/positive. This is opposite to the correspondence 
between the sign of the imaginary part of the pressure and the direction of energy 
transfer. From (5.8) and using (5.9) the imaginary part of tE* is given by 

e+j* + g* 2 [-{tan -4 2 B +- f }+tan2@-2jtane 1 , 
(2&33 cos2 6' 

(5.27) 

Providing f is sufficiently small (5.27) is plainly positive in the case of 6' > 0, 
indicating that the irreversible energy transfer is stabilizing for TWF but 
destabilizing for the TSI. For 6' < 0 the situation is rather more complex ; because, 
even whenf = 0, the two remaining terms of (5.27) take opposite signs. For the TWF 
C, tends to be close to 1 at the onset of instability, so that the first of these terms is 
generally negligible compared to the second, except for very small values of 6, when 
both terms are negligible. Consequently the fluctuating shear stress continues to 
have a stabilizing influence on the TWF even for negative 6. On the other hand for 
the TSI typically cr < 0.4, so that the first term of (5.27) will dominate until 6' is fairly 
close to -5.. Thus, for TSI, fluctuating shear stress generally has a stabilizing effect 
when 8 < 0, as shown also by the results presented in figure 10. 

Damping in the wall 
This does not appear explicitly in the energy equation (5.22) for the flow. 

Nevertheless it is well known to have a destabilizing influence on the TSI, and it was 
this observation that originally led to the Landahl-Benjamin energy classification 
concept. As suggested by Domaradski & Metcalfe (1987) damping must exercise its 
influence indirectly by modifying the wall boundary conditions and thereby 
increasing the production of energy by the Reynolds stress. The fact that its 
destabilizing influence cannot apparently be deduced from a study of the energy 
equation is a good indication of the value of Landahl and Benjamin's approach. 
Physically, wall damping usually takes the form of viscoelastic losses, which can be 
modelled by introducing complex elastic moduli, or viscous losses in a fluid substrate. 
The modelling of these effects is discussed in Carpenter & Garrad (1985). Wall 
damping is always stabilizing to the TWF and almost always destabilizing to the 
TSI . 

In summary, i t  may be concluded that anisotropic wall compliance will tend to 
stabilize the TWF instability by means of the irreversible work done by the 
fluctuating shear stress. This effect is almost independent of the sign of 8. For the TSI 
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there are many competing mechanisms of stabilization and destabilization. On 
balance the overall effects of anisotropic wall compliance are stabilizing for 0 > 0 and 
for small negative values of 8, but destabilizing for larger negative values of 8. These 
conclusions will be confirmed by the numerical results presented in $5.5 and $6.2. 

Should the movement of the wall parallel to the fibres be restrained as much as 
possible? That is, should f be as small as possible, in order to obtain the greatest 
possible stabilization of the TSI? The answer to this question has important 
implications for the design of anisotropic and isotropic compliant walls. It is difficult 
to give a definite answer because, as can be seen from the analysis presented above 
and the results summarized in table 1, increasing f enhances some energy-transfer 
mechanisms but reduces others. 

There is also the question of the effect of non-zero f on energy production by the 
Reynolds stress across the bulk of the boundary layer. This remains unanswered. In 
an attempt to shed some light on the overall effect of non-zero f on the stability of 
the TSI, some computations were carried out using the theoretical model of the 
compliant wall described in $2, but with (1.1) replaced by (5.10). It was found that 
with f = 0.05 there was a small reduction in the growth rate for the isotropic case, 
but a much larger rise in the growth rate for the anisotropic case. See the black 
triangles in figure 20. This rise in growth rate grew larger as 8 was increased. In fact, 
for 8 greater than about 15' the growth rates for f = 0.05 were off the scale of figure 
20. The trends found for f = 0.05 persisted to much higher values off in both the 
isotropic and anisotropic cases. The way that non-zero f has been introduced here is 
obviously rather artificial so, perhaps, too much should not be read into these results, 
particularly since the results in the isotropic case conflict with the contention of 
Gaster (1987), supported by appropriate calculations of the TSI in Daniel et al. (1987) 
that, by restricting the horizontal motion of the wall, the presence of a thin skin 
covering a viscoelastic substrate improved the ability of the compliant wall to reduce 
the growth of the TSI. The overall effect of non-zero f must, accordingly, be regarded 
very much as an open and important question. 

5.5. Results for the travelling-wave flutter instability 
Dispersion curves for the TWF instability are presented in figure 13 for Re = 2240 
and 6 = 0, 45' and 60'. In each case optimal wall properties are used with Ed = 
58.93 x As noted in $6.2 this value of L Z ~  corresponds to the lowest maximum 
growth rate of the TSI at Re = 2240. The main result illustrated by figure 13 is that 
anisotropic wall compliance exerts a very considerable stabilizing effect on the TWF. 
The corresponding results for negative fibre angles are not presented : they are very 
little different from those in figure 13. This corroborates the conclusion made above 
in 55.4 regarding the indifference of the TWF to the sign of the fibre angle. Yeo (1986, 
1990) came to the same conclusion. 

Figure 14 shows how the suppression of various effects influences the behaviour of 
the TWF. When the fluctuating shear stress is omitted in (2.4) the TWF becomes 
slightly unstable. Moreover when all viscous effects are suppressed the resulting 
curve of instability growth rate versus wavenumber is very little changed from that 
corresponding to zero shear stress. Accordingly we may conclude that the main 
stabilizing mechanism for TWF, associated with anisotropic wall compliance, is the 
irreversible work done by the fluctuating shear stress on the wall. As shown above 
in 55.4 this mechanism is indifferent to the sign of the fibre angle for the TWF. Some 
additional stabilization is apparent at  low wavenumbers. In 55.4 this was shown to 
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FIGURE 13. The effect of anisotropic wall compliance on the spatially developing TWF. In  each case 
Re = 2240 and the wall parameter, tid = 58.93 x The wall properties for U ,  = 20 m/s are 
given in table 2 and figure 18. The lines correspond to the results of the asymptotic theory as 
follows : -, C; ; ---, - 200~~: ; while the discrete data points correspond to accurate numerical 
solutions of the Orr-Sommerfeld equation as follows: 0,  6 = 0; 0, 45"; x , 60". 
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FIGURE 14. Illustration of the effects of various modes of irreversible energy transfer on the TWF. 
0 = 60' and Re = 2240. The conditions and wall properties are as for figure 13. -, -ti: (full 
viscous asymptotic theory) ; . . . . . . , - 10EF (+w = 0); ---, - loaf (8 = 0). 
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be due to modification by the viscous wall layer of the irreversible work done by the 
wall pressure. 

The predictions of the asymptotic theory are compared with numerical solutions 
of the Orr-Sommerfeld equation in figure 13. In  general the agreement is very good. 
However, although the phase speed is below the free-stream speed for wavenumbers 
above about 0.2 for the case of 8 = 60°, thereby ensuring the presence of a critical 
layer, the TWF is stable for all wavenumbers in this and the other two cases 
illustrated in figure 13. Accordingly, it  might be felt that this is a rather inadequate 
test of the asymptotic theory. It is shown in Carpenter & Gajjar (1990) that the 
viscous effects in the critical layer make a O ( E )  contribution to the wall pressure, so 
this is a higher-order effect. Nevertheless in their figure 9, which presents a 
comparison between the predictions of the asymptotic theory and numerical 
solutions of the Orr-Sommerfeld equation for an unstable isotropic compliant wall, 
the asymptotic theory can be seen to underestimate substantially the value of the 
imaginary part of the eigenvalue (ci) for temporal TWF instability. Whether this 
underestimate arises because of the omission of the higher-order critical layer 
contribution to the wall pressure, or because of some other effect associated with 
positive ci (or, equivalently, in the present case, negative Ef), is not completely clear. 
It is known from Carpenter & Gajjar (1990) and Carpenter & Garrad (1986) that the 
asymptotic theory predicts the location of the neutral curve in (E:, Re)-space with 
high accuracy for isotropic compliant walls. This also implies that the onset speed for 
the instability would be very accurately predicted. 

It is for the prediction of the onset speed and neutral stability that the asymptotic 
theory is chiefly needed. Accordingly, it is important to try to ascertain whether or 
not the asymptotic theory remains accurate in this regard for anisotropic compliant 
walls. It turns out, however, that it is extraordinarily difficult to obtain numerical 
solutions of the Orr-Sommerfeld equation in the vicinity of neutral stability. The 
situation is exacerbated as the degree of anisotropy increases, that is as the fibre 
angle rises. Some idea of the problem can be had from figure 13 where the lack of data 
points will be noted for ZF greater than about 0.4 for 8 = 45' and E: between about 
0.2 and 0.85 for 8 = 60". The problem appears to lie with the difficulty of converging 
on a discrete eigenvalue in the vicinity of the continuous spectrum. (See $6.1 and 
figure 16 for results showing the approximate location of the continuous spectrum.) 
Because of these difficulties there is a paucity of data points corresponding to 
numerical solutions of the Orr-Sommerfeld equation in figure 15(a) where the 
neutral curves corresponding to z, = 1.25 for various values of 8 are presented 
(where z, is the ratio of the plate thickness to the optimal value). Nevertheless good 
agreement is found between the neutral curves obtained from the asymptotic theory 
and the few data points. Good agreement was also found for eigenvalues away from 
the neutral curve even when convergence problems prevented solutions being 
obtained near the neutral curve. Thus there is no- reason to assume that the 
asymptotic theory is not just as accurate for anisotropic compliant walls as for 
isotropic ones. Indeed, since the asymptotic theory is free of the convergence 
problems caused by the presence of the continuous spectrum, it appears to be the 
only feasible method of obtaining the neutral curves in the cases studied in the 
present paper. 

It can be seen from figure 15 (a) that, as 8 rises, anisotropic wall compliance has an 
increasingly stabilizing effect on the TWF. This is because of the increase in the 
irreversible work done by the fluctuating wall shear stress as the fibre angle increases. 
In  figure 15(b) the neutral curves are plotted for three values of z, a t  a fixed value 
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FIGURE 15. The effect of anisotropic wall compliance on the neutral curves for TWF. The wall 
parameter zd = 58.93 x in all cases. (a) Various values of fibre angle with z, fixed at  1.25, 
where z, is the ratio of the plate thickness to the optimal value given in table 2. The value of elastic 
modulus is chosen so as to keep the flexural rigidity equal to its value a t  z, = 1. The data points 
correspond to accurate numerical solutions to the OrrSommerfeld equation ; 0 , 8  = 30" ; , 8 = 
45". (b) Various values of plate maas with B = 60". Curve 1, z, = 1.5; 2, z, = 1.3514; 3, z, = 1.25. 

of 0 = 60". This shows that, as for the isotropic case, see Carpenter (1985b, 1987a), 
a rise in plate mass is destabilizing for TWF over anisotropic compliant walls. To 
calculate the wall properties for the cases shown in figures 15 (a) and 15 ( b )  the desired 
value of C, was chosen and then the corresponding values of C, and C K ,  were 
calculated from (5.19) and (5.20). 

It is tempting to conclude from the results in figures 13-15 that anisotropic wall 
compliance could be used to suppress the TWF. On closer inspection the feasibility 
of this course of action would appear to depend on the way in which wall compliance 
is used. Thus, if the surface comprised a series of one or more relatively short 
compliant panels with properties tailored to the appropriate Reynolds-number range 
then, provided the onset of TWF could be postponed to beyond the trailing edge of 
a given panel, the inertial mass of the wall could exceed the optimum value given by 
(5.19)-(5.21). This would result in an improved performance with respect to the 
reduction in growth of the TSI and consequent increased transition postponement. 
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On the other hand, if a single relatively long compliant coating extending over a 
considerable Reynolds-number range were used, the onset of TWF may be merely 
postponed to the later stages of transition or to the fully turbulent regime. This point 
is illustrated by the neutral curves plotted in figure 15(b)  which demonstrate that, 
for an infinitely long uniform surface, the use of anisotropic wall compliance can only 
postpone the Reynolds number a t  which TWF sets in and cannot suppress it 
altogether. This is only to be expected since the basic instability mechanism is 
fundamentally inviscid. 

It may be dangerous to allow the TWF and TSI to be present simultaneously, since 
it is known from the  work of Carpenter, Gaster & Willis (1983), Carpenter & Garrad 
(1985) and Willis (1986) that a powerful new instability can emerge from the 
coalescence of the TSI and TWF, even in the linear regime of transition. This 
instability is probably absolute. It has also been found in the case of anisotropic 
compliant walls by both Yeo (1986, 1990) and ourselves. Moreover there is the 
possibility of further interactions in the nonlinear transition regime. Thus, at the 
present state of knowledge, the only sure way to remove the danger of the TWF in 
the case of an extended length of compliant surface is to ensure that it is stable at 
all Reynolds numbers. The optimal wall properties given in $5.3 correspond to the 
best that can be done within this restriction. Nevertheless some results will be given 
for heavier compliant walls for which the critical Reynolds number for TWF is set 
a t  a finite Reynolds number. 

It is worth pointing out that the remarks made above, concerning the use of 
anisotropic wall compliance for controlling the TWF, also appear to apply equally 
well to the use of damping in the wall when realistic theoretical models are used to 
simulate the viscoelastic material properties or the effects of a viscous fluid substrate. 

6. The numerical investigation of instability and transition delay 
6.1, Results using the globally convergent scheme 

How can we be certain that all the unstable eigenvalues have been identified ? In 
order to respond to this question the globally convergent method described in $4.3 
has been used in the present study to search for all the eigenvalues. An alternative, 
completely different, approach to the problem is that due to Sen & Arora (1988) who, 
in effect, investigated all the possible motions of the compliant wall. Their method 
has already produced some surprising results; for example, it was shown, contrary to 
expectations, that the TWF could be unstable even with a phase speed in excess of 
U,. See also Carpenter & Gajjar (1990). Their method could readily be extended to 
the simple anisotropic compliant wall of $2. It would be difficult, however, to extend 
either the method of Sen & Arora or that of $4.3 to volume-based compliant-wall 
models like those of Yeo (1986, 1988, 1990). 

Even with the globally convergent scheme it is a daunting task to establish for 
certain that no previously unidentified unstable eigenvalues exist for a particular 
compliant wall. It would be necessary to cover a large range of and Re and we do 
not claim to have done this. We have examined a limited range of W* and Re for two 
cases, namely the compliant walls with optimal properties having 8 = 0 and 60' (see 
table 2 for wall properties). A typical result is shown in figure 16. The eigenvalues are 
plotted in the form (Cr, Ei) but, in fact, correspond to spatially growing disturbances, 
so C,. = Re (is*/&:) and ci = -1m (is*/&*) (note that when &* < 0 instability 
corresponds to < 0). Most of the eigenvalues plotted in figure 16 represent an 
approximation to the continuous spectrum and can be distinguished from the 
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0.507 
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0.354 
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0.0295 
0.0197 
0.0147 

0.0158 
0.0132 
0.0105 
0.0079 
0.00526 
0.00395 
0.002 63 

0.0158 
0.0132 
0.0105 
0.0079 
0.00526 
0.00395 
0.002 63 

TABLE 2. Optimal wall properties. Re,, denotes the value of Re for which marginal stability of 
TWF and divergence is required 

discrete eigenvalues by comparing the results obtained by using 48 and 58 Chebyshev 
polynomials. The eigenvalues corresponding to the continuous spectrum tend to shift 
as the order of the approximating polynomial is increased, whereas the discrete 
eigenvalues remain fixed. The three fixed eigenvalues are marked by the numerals 1, 
2 and 3 in figure 16. In fact, there is also a fourth discrete eigenvalue corresponding 
to TWF, but for a* = 0.055 its value of is considerably greater than unity and is 
therefore too large to appear in figure 16. Eigenvalue 1 corresponds to the TSI and 
eigenvalue 2 probably corresponds to divergence. 

The appearance in figure 16 of eigenvalue 3 at first aroused both suspicion and 
consternation owing to its extremely large imaginary part which, according to 
conventional interpretation, would imply a powerful spatially growing instability. It 
turns out that it is a genuine eigenmode, but most probably is related to the 
evanescent waves described by Briggs (1964) and does not represent an instability. 
It is related to one of four spatially developing free-wave eigenmodes. The physical 
interpretation of these free wave modes and, by implication, of eigenmode 3 is 
revealed by the study of an initial-value problem which is loosely analogous to that 
formulated by Gaster (1965) to model the effects of a vibrating ribbon on a boundary 
layer. In  this way it is established that a complex wavenumber, with a positive real 
part and negative imaginary part, need not represent a spatially growing instability. 
Eigenmode 3 and its physical interpretation will be discussed in more detail in a later 
paper. 
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FIGURE 16. A plot of all the eigenvalues obtained by the globally convergent scheme in terms of 
the imaginary part of the complex wave speed (a = G * / a * )  versus the real part. a* = 0.0651 and 
Re = 2240 for the isotropic case with the wall parameter Zd = 58.93 x Properties for Urn = 
20 m/s are given in table 2. The symbols for the data points denote the following: x , n = 48 
Chevyshev polynomials; 0, n = 55. (The data were supplied by R. D. Joslin of Pennsylvania State 
University. ) 
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FIGURE 17. The computed divergence (D) eigenmode compared with TWF and TSI ones for 19 = 
60°, Re = 2240 and wall parameter a,, = 58.93 x lo-'. Properties corresponding to U, = 20 m/s are 
given in table 2 : --, cr ; ---, - 1OOZ; (ci for D) ; . * . .  . ., (potential flow solution for D) ; - .-, 
c; (asymptotic theory with E = 0); c; is equivalently zero in the last two cases. 

We now turn briefly to further consideration of the divergence eigenmode. In 
figure 17 dispersion curves are plotted for the three conventional eigenmodes in the 
case of an anisotropic compliant wall (0 = 60') having optimal properties (see table 
2). The curve labelled D is thought to be the divergence eigenmode. It will be noted, 
though, that there is poor correspondence between the predictions of potential 
theory, or of the asymptotic theory of $5.1 with viscous effects neglected, and 
(temporally growing) numerical solutions of the Orr-Sommerfeld equation. The 
physical reasons for this are not altogether clear, but mathematically, the singular 
behaviour of the wall pressure, through Gmlr (see figure 6) ,  as c, +-0, is a part of the 
explanation. Furthermore the potential-flow theory, in effect, neglects terms of O(iz*) 
and the asymptotic theory neglects terms of O(CZ*~) .  These appeared to be reasonable 
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approximations when cr 9 0 but only hold for &* < 0.05 when rr < 0. There are also 
difficulties in incorporating viscous effects when < 0 because the viscous wall layer 
appears to vanish. 

Temporal, rather than spatially growing, waves were used for divergence because 
i t  was difficult to obtain convergence in the spatial case. In  any case it is questionable 
whether the spatially growing wave is a good model for divergence. In fact, the use 
of the Orr-Sommerfeld equation itself is also questionable. It is known (see Carpenter 
& Garrad 1986) that for potential flow the behaviour of the divergence-like solution 
over compliant surfaces of finite length differs rather fundamentally from the 
travelling-wave solution over an infinite surface. From the results presented by 
Carpenter (1990) of a computer simulation of the divergence instability for potential 
flow over finite isotropic compliant walls, using the methods of Lucey (1989) and 
Lucey, Harris 8z Carpenter (1989), it appears that divergence is an absolute 
instability which forms from a coalescence of upstream- and downstream- 
propagating waves. The OrrSommerfeld equation would not appear to be 
appropriate for the study of such an instability. Disregarding this point for the 
present, the results in figure 17 and others like them suggest that viscous effects are 
important for divergence and that they tend to be stabilizing. On the basis of these 
results, then, the prediction (5.11 b )  for critical onset speed is rather conservative. 

6.2. Presentation and discussion of main numerical results 
Many results of the numerical investigation, using the methods described in $4.1, 
have already been presented in $5. The effect of anisotropic wall compliance on the 
form of the disturbance velocity profiles (eigenfunctions) is illustrated in figures 8 
and 9. The various contributions to the terms of the energy equation are presented 
in figure 10 for isotropic and anisotropic walls. The effects of anisotropic wall 
compliance on the distributions of energy production due to Reynolds stress, of 
viscous dissipation rate and of (U-e) Iui are illustrated in figures 11 and 12. The last 
quantity is closely related to irreversible energy transfer to the wall due to work done 
by the fluctuating wall pressure. Finally, data points corresponding to numerical 
solution of the full Orr-Sommerfeld equation are plotted in figures 13 and 15(a)  
which give the dispersion curves and neutral curves respectively for the TWF over 
anisotropic and isotropic compliant walls. 

For many of the results presented in $5 and below, a value of Re = 2240 has been 
chosen. This value was originally selected in Carpenter (1985 b)  because it corresponds 
to the approximate location of maximum growth rate in a boundary layer over a 
rigid wall for a disturbance having the critical frequency in the en sense. 

The concept of optimal wall properties, as outlined in 35.3, was used to select the 
properties for the cases previously presented and those presented below. In most 
cases it is required that the properties correspond to marginal stability at  infinite 
Reynolds number with respect to the TWF and divergence. In  the case of non- 
dissipative walls this leaves two free parameters, namely the fibre angle, 8 ,  and the 
non-dimensional critical wavenumber, Ed, for divergence. The method used for 
calculating the corresponding optimal properties was briefly described a t  the end 
of $5.3. The resulting properties for a flow speed of 20m/s, material and fluid 
densities of 1000 kg/m3, Poisson ratio of 0.5 and Ed = 58.93 x lo-'' are presented as 
functions of 8 in figure 18. Properties for other values of are given in table 2. The 
variation of the properties with 8 is partly explained by the concept of inviscid 
equivalence, which leads to the relationships (5.10). Another factor is the rise in the 
contribution to the overall wall stiffness of the induced-tension term Eb a2[/i3x2 sin 8 
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FIQURE 18. Optimal compliant wall properties as functions of fibre angle for U ,  = 20 m/s. The lines 
correspond to marginal hydroelastic stability imposed at Re = 00 as follows : -, b (mm) ; ----, 
!@ (MN/m*); -.- , 2KE (GN/m*). The symbols correspond to marginal stability imposed at 
Re = 2240 as follows; 0,  6 (mm); 0, $E (MN/m2); x , 2KE (GN/m3). 

in (2.2) as the value of 6 is increased. Consequently the bending and spring stiffnesses 
have to be correspondingly reduced to keep the overall stiffness, and hence 
compliance, more or less invariant with 8. 

In order to maintain dynamic similarity at other flow speeds the non-dimensional 
wall properties given in (5.17) must remain invariant. This invariance allows the 
optimal wall properties for other flow speeds to be obtained from those given in figure 
18 and table 2. Thus from (5.17) it can be seen that 

b - l /Uw, B - i /Um, K - Vm, E - Urn, ad - l/Um. (6.1) 

The question of whether or not these properties could be realized in practice will 
inevitably be raised. In the case of isotropic walls in water flow it was found by 
Carpenter (1985b, 1987a) that the optimal properties at 20m/s are not greatly 
different from the original compliant coatings of Kramer (1960). Plainly, then, the 
properties can be practically realized in this case and, although the optimal 
properties vary considerably with fibre angle, 8 ,  no insuperable problem is 
anticipated in the manufacture of anisotropic compliant walls with optimal 
properties. 

In most cases the requirement of marginal stability at infinite Reynolds number 
with respect to the two hydroelastic instabilities was imposed. This requirement may 
be considered unduly conservative. Accordingly the optimal properties were also 
calculated with marginal stability of the TWF imposed at  a finite Reynolds number 
of 2240. The corresponding wall properties are to be found in table 2 and figure 18. 
Unless otherwise stated, though, optimal properties corresponding to marginal 
stability a t  infinite Re were used. It is somewhat more difficult to calculate the 
optimal properties corresponding to marginal stability at  finite Re. The procedure 
adopted is as follows. The optimal properties corresponding to marginal stability at 
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FIGURE 19. Effect of anisotropic wall compliance on neutral-stability boundaries for TSI. The wall 
parameter Bd = 58.93 x . . . . . ., Rigid wall ; -, 0 = 0;  -.-, 0 = 60'; ----, 8 = 75'. The 
wall properties corresponding to U,  = 20 m/s are given in table 2. 

Re = 00 are used as a starting point. The plate thickness and elastic modulus are then 
varied by trial and error, keeping the flexural rigidity, spring stiffness and Ed fixed, 
until a larger value of plate thickness is found for which the TWF is neutrally stable 
a t  some value of ti* and stable for all other values. This is achieved by using the 

FIGURE 20. The effect of anisotropic wall compliance on the maximum growth rate of the TSI with 
wall parameter ad = 58.93 x The wall properties corresponding to Urn = 20 m/s are given in 
figure 18. The upper set of curves correspond to Re = 5000, the lower to Re = 2240. The data points 
correspond to the actual computed values as follows: 0, solution with al! terms included; 0,  
solution with +, = 0; x , solution with 5 = 0; in the foregoing cases marginal hydroelastic stability 
was imposed a t  Re = Re,, = 03, corresponds to a case for which Re,, = 2240. A corresponds to 
the case for which f = 0.05 and Re = 2240. 
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asymptotic theory of $5.1 to obtain accurate approximations to the Orr-Sommerfeld 
equation, as in $5.5. The use of full numerical integration of the Orr-Sommerfeld 
equation for this purpose would have involved a prohibitively large amount of 
computational work. It also may well have not been possible to obtain the desired 
numerical solutions owing to the convergence problems (see $5.5) associated with the 
presence of the continuous spectrum. 

Computed neutral curves are presented in figure 19 for the rigid wall and for 
compliant walls with I9 = 0, 60" and 75". It can be seen that the region of instability 
in (a*, Re)-space becomes progressively smaller as I9 rises. 

With the help of the computed results presented to  illustrate $5 and summarized 
in table 1 it has been established that the principal way in which anisotropic wall 
compliance reduces the growth of the TSI is by the reduction of the energy 
production due to Reynolds stress. Irreversible energy transfer from the disturbance 
to the mean flow due to  the interaction of fluctuating viscous shear stress and the 
displaced mean flow, also makes an important contribution. The effect of reduced 
Reynolds stress is enhanced for anisotropic walls with I9 > 0 and diminished for I9 < 
0. The unfavourable effects associated with 8 < 0 are ameliorated to  a considerable 
extent by a rise in the energy-removal rate due to  shear-stress/displaced-mean-flow 
interaction when I9 < 0 and by the effects of irreversible energy transfer to the wall 
due to the work by the fluctuating shear stress. The latter is stabilizing for the TSI 
when 8 < 0 and destabilizing when 0 > 0. The balance of these various energy- 
transfer mechanisms is reflected in the results plotted in figure 20. There the 
maximum growth rate of the TSI is plotted against I9 for fixed ttd and Re. 

It will be noted from figure 20 (solid lines) that, unless the magnitude of 0 is small, 
the growth rate for positive fibre angles is considerably less than that for the isotropic 
case, while that for negative fibre angles is considerably more. At Re = 2240 the 
optimum fibre angle appears to be about 75". This is clearly Reynolds-number 
dependent since no minimum was reached at Re = 5000, although presumably one 
does occur at sufficiently high values of 19. For small absolute values of I9 the growth 
rate is reduced compared to I9 = 0 irrespective of the sign of 8. This can be explained 
by the trade-off between the various energy-transfer mechanisms as adumbrated in 
the previous paragraph. The effects of energy transfer due to the irreversible work 
done by the fluctuating shear stress is clearly depicted in figure 20. Note the broken 
lines corresponding to  computations for which f w  has been set equal to zero in (2.4) 
and (3.12). It can be seen immediately that this mechanism is stabilizing when 0 < 
0 and destabilizing when 8 > 0; the latter effect being the stronger. As expected, 
since this is essentially a viscous effect, the difference between the growth rates with 
and without 7, is much reduced at the higher Re of 5000. This is very much in line 
with the predictions of the asymptotic theory presented in $5.4. The large difference 
between the growth rates with and without 7, for I9 >, 60' and Re = 2240 is worth 
noting. Based on the relative size of the various terms of the energy equation 
presented in figure 10 one could be forgiven for concluding that energy transfer due 
to the irreversible work done by the fluctuating shear stress played a very minor role. 
The results presented in figure 20 make i t  plain that this is far from the case. 
Accordingly, it is suggested that energy transfer due to irreversible work done by the 
fluctuating wall pressure probably also makes a significant contribution to the 
overall stabilization/destabilization mechanisms. Evidently i t  is unwise to  try to  
make quantitative predictions based on the relative size of the various terms in the 
energy equation. 

Also shown in figure 20 (see the dash-dot lines) are the results obtained when 
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horizontal displacement, 5, is set equal to zero in (2.4) and (3.12). In this case, as 
expected, the growth rates are invariant with the sign of 8. The growth rate falls with 
small values of 6 and then rises gradually. This is because the flexural rigidity, spring 
stiffness and plate thickness all decrease with a rise in 8. A decrease in stiffness is 
stabilizing whereas a reduction in plate mass is destabilizing. For low values of 0 the 
first effect dominates while a t  higher values the destabilizing effect of reduced plate 
mass dominates. The results for .$ = 0 in figure 20 demonstrate convincingly that the 
considerable reduction in TSI growth rate found for positive fibre angles is not just 
a result of a favourable change in wall compliance, but is very much dependent on 
the horizontal motion of the wall. It is also clear that the effect is predominantly 
viscous, since again the difference between the growth rates with and without 
horizontal motion are much reduced a t  the higher Reynolds number of 5000. 

Some computations have been carried out for optimal wall properties obtained by 
imposing marginal TWF stability at Re = 2240 instead of co. This leaves the optimal 
properties almost unchanged in the isotropic case of 6 = 0 but makes a substantial 
difference as 6 becomes larger. In figure 20 the data point denoted by the black circle 
corresponds to the (Re = 2240) optimal properties a t  6 = 75". It can be seen that a 
further 10% reduction in maximum growth rate is obtained. 

Also included in figure 20 are two results, denoted by the black triangles, of 
calculations with non-zero f. Further explanation is to be found towards the end of 

Since it appears from figure 20 that the optimum fibre angles are fairly large it is 
interesting to speculate on the limiting case of 6 = 90". No calculations were carried 
out for 0 > 80" : it became increasingly more time-consuming to perform calculations 
at these high values of 8. From the results obtained it appears that the optimal 
values of spring stiffness and plate thickness both tend to zero as 6-+3c. This is 
reflected in figure 18. Moreover, it  is what emerges from investigating the behaviour 
of (5.19)-(5.21) in the limit as 8+$. However, it should be noted that it is tacitly 
assumed that the optimal value of Zd remains fixed as the limit of 6 = &  is 
approached. There is no evidence that this is not a good assumption, but its validity 
has not been established for certain. If the limiting values of the optimal properties 
are correct then there can be little practical interest in the case of 6 = $ ~ .  
Furthermore, it  can be seen from figure 20 that there is a very steep rise in TSI 
growth rate once the optimal fibre angle is exceeded. This is undoubtedly a result of 
the increasing dominance of irreversible energy transfer due to the work done by the 
fluctuating shear stress. 

The results of the en-type calculations, described in 54.2, are considered now. 
Maximum-amplification envelopes for various values of ad are presented in figures 21 
and 22 for 6 = 0 and 60° respectively. The curves are envelopes of individual curves 
of the ratio of the disturbance amplitude to its initial value a t  neutral stability versus 
Re for fixed values of frequency. Some of these fixed-frequency amplitude curves are 
plotted in figure 22. It can be seen from figure 21 that for the isotropic compliant wall 
the maximum-amplification envelopes assume a characteristic sigmoid shape. As the 
value of ad is reduced the local minimum moves to higher values of Re. The local 
minimum corresponds to the Reynolds number for which the wall properties are 
optimal with respect to instability growth. Thus the results for Ed = 58.93 x lop6 
correspond to optimization with respect to TSI growth rate at about Re = 2240. It 
is also plain from figure 21 that, once a value has been selected for n, it is the size of 
the local maximum in the maximum-amplification envelopes that limits the 
'transitional ' Reynolds number attained with use of isotropic wall compliance. For 

$5.4, 
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FIGITRE 22. The maximum amplification envelopes as functions of Re for two optimal anisotropic 
compliant walls with 0 = 60". -, Curve, 1 ,  rigid wall; 2, 6, = 14.73 x 10-a; 3, 6, = 58.93 x lo-'; 
- In (4,/6,) vs. Re for fixed frequency (F = ij* x 106/Re). The wall properties corresponding to  
U ,  = 20 m/s are given in table 2. 

carrying out predictions of transitional Reynolds number a relatively conservative 
value of n = 7 has been used. This corresponds approximately to the limit of the 
linear regime of transition over rigid walls in conditions of very low free-stream 
disturbance. The transition-delay factor, defined as the ratio of Re, corresponding to 
n = 7 for the compliant wall to that for the rigid flat plate, is plotted in figure 23 as 
a function of a d ,  The sharp fall for 0 = 0 (and similar ones for the anisotropic walls), 
which occurs at  about Ed = 40 x lop6, corresponds to the case when the local 
maximum reaches n = 7 in figure 21 (i.e. Curve 3). This case can be regarded as 
corresponding to the best performance, based on n = 7, for a non-dissipative 
isotropic compliant wall. The distance from the leading edge to the end of the linear 
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FIQURE 23. The relative increase in the length of the linear transition regime as a function of the 
wall parameter ?id for various anisotropic and isotropic compliant walls. The transition-delay factor 
is defined as the ratio of the value of Re, corresponding to n = 7 in a particular case to tha t  for the 
rigid wall. ---, 8 = 0; ---, 8 = 60"; __ , 8 = 75' ; in the foregoing cases marginal hydroelastic - -  
sGbi1ity w&s imposed at Re = Re,, = CO, -- x --, corresponds to the case for which Re,, = 2240 
for 8 = 75". 

regime of transition is predicted to be 4.5 times greater than for the corresponding 
rigid wall in this case. 

Two cases for B = 60" are plotted in figure 22. One curve corresponds to ad = 
58.93 x Note that n = 7 is slightly exceeded at 
relatively low Re in the second case. In  contrast to the isotropic case illustrated in 
figure 21 the maximum-amplification envelopes for the anisotropic compliant wall do 
not exhibit the characteristic sigmoid shape so clearly. There is a very slight local 
maximum and minimum for Curve 2 in figure 22, but essentially it remains fairly flat 
for a considerable range of Reynolds numbers. Thus the optimal properties of 
anisotropic compliant walls are not finely tuned to the local Reynolds number as are 
those for the isotropic walls. This, along with reduced growth rates, leads to a 
considerably improved performance compared to isotropic compliant walls. The 
reason for the reduced sensitivity to Reynolds number remains to be fully explained. 
It is suggested here that i t  comes about because of the reduced contribution by the 
flexural rigidity to  the overall wall stiffness. The term containing B in (3.12), see 
(3.10) also, involves whereas the tension and spring-stiffness terms are less 
heavily dependent on wavenumber. Further evidence that walls without bending 
stiffness are far less sensitive to Reynolds number, is to be found in Carpenter 
(1985b). There is was found that the maximum growth rates for TSI in boundary 
layers over spring-backed tensioned membranes with optimal properties varied 
much less with ad than those for plate/spring compliant walls. 

The increase in the extent of the linear regime of transition for anisotropic 
compliant walls with 0 > 0 is shown by the results plotted in figures 23 and 24. The 
latter shows the transition-delay factor as a function of 0 keeping Zd fixed at 
58.93 x while figure 23 depicts the variation of this quantity with Ed for 0 = 60" 

the other to Ed = 14.73 x 
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Fibre angle, 0 (deg.) 

FIGURE 24. The relative increase in the length of the linear transition regime as a function of fibre 
angle keeping the wall parameter tid fixed a t  58.93 x loFg. Transition-delay factor is defined as in 
figure 23 and the wall properties corresponding to U ,  = 20 m/s are given in figure 18; the 
properties for negative 0 are the same as for the corresponding positive angle. The data points 
correspond to wall damping as follows : 0, i j  = 0.05 ; x , 

and 75'. It can be seen from figure 24 that for negative fibre angles the 'transitional' 
Reynolds number remains practically unchanged until 6 = - 45". For positive fibre 
angles there is a steady rise in ' transitional ' Reynolds number as 0 increases. When 
ad is reduced in value as in figure 23 the advantages of anisotropic wall compliance 
becomes even more pronounced. The 'transitional ' Reynolds number is predicted to  
reach as much as 7 and 8.5 times the rigid-wall value for 6 = 60" and 7 5 O  respectively. 
If the conditions on marginal stability for the TWF are relaxed, and the Reynolds 
number required is reduced from infinity to  2240, an even more impressive extension 
of the linear transition regime is obtained, as seen in figure 23. Thus it can justly be 
claimed that in theory almost a ten-fold rise in transitional Reynolds number is 
possible with the use of anisotropic wall compliance. 

Owing to the sensitivity of the optimal wall properties to Reynolds number it is 
natural to speculate on the possibility of tailoring the wall properties for a particular 
Reynolds-number range. Probably the most practical way to achieve this is to 
construct a compliant surface from a series of panels in tandem (and possibly in 
parallel as well). One can easily envision a further improvement in performance with 
this arrangement, especially as it is likely to confer increased stabilization with 
respect to the hydroelastic instabilities, thereby allowing the use of heavier and more 
flexible walls. At present there is no information, either experimental or theoretical, 
to  offer guidance on just how small a compliant panel may be without significantly 
impairing the stabilizing effect on the TSI. From the point of view of the eventual 
technological exploitation of compliant walls for transition postponement this is an 
important practical problem. 

Three-dimensional effects should also be mentioned. It was shown by Yeo (1986), 
Carpenter & Morris (1989) and Joslin el al. (1990) that, for compliant walls with good 
transition-delaying properties, oblique TSI tend to have a higher growth rate than 

= 0.1. 
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the corresponding two-dimensional instabilities. It is easy to see why this should be 
so. The effective wall compliance increases with flow speed, while the effective flow 
speed for an obliquely propagating wave is less than U,. Thus oblique waves 
experience decreased effective wall compliance compared to two-dimensional ones. 
This has a relative destabilizing effect on the oblique TSI which can dominate the 
stabilizing effect of reduced effective Reynolds number. The relative dominance of 
the oblique waves is highly Reynolds-number dependent and is postponed to higher 
Reynolds number for smaller values of Ed. Anisotropic wall compliance seems to 
confer advantage with regard to the dominance of the oblique waves. The higher the 
value of 8 the less the dominance of the oblique waves. This appears to be because 
the energy transfer due to irreversible work done by the fluctuating shear stress 
(which, as shown above, has a destabilizing effect on the TSI) is reduced for oblique 
waves. Nevertheless the results of the en-type calculations presented in figures 23 and 
24 may need to be modified when three-dimensional effects are taken into account. 

It appears from the results of the present study that, in almost every respect, 
anisotropic compliant walls with positive fibre angles confer advantage for transition 
postponement compared to their isotropic counterparts. In one respect, however, 
isotropic wall compliance has the advantage. It appears to be less sensitive to wall 
damping. This is illustrated by the data points plotted in figure 24. In order to 
perform these calculations E is replaced by the complex quantity E( 1 - iy) in (2.4) 
and B and K ,  are similarly treated. In this way viscoelastic effects can be simulated. 
71" can be regarded as the viscoelastic loss factor. en-type calculations were carried out 
for = 0.05 and 0.1, which are typical values for elastomers. It can be seen from 
figure 24 that the deleterious effects of wall damping are proportionately larger for 
8 =  75" than for 8 = 0. It should be feasible to manufacture fibre-composite 
anisotropic walls with low damping (Q x 0.01 or less), so this should not prove a 
major drawback for the application of anisotropic wall compliance. 

There is another consequence of the greater sensitivity of anisotropic compliant 
walls to damping. Carpenter (1985b) found that, provided the value of Re required 
for marginal hydroelastic stability were relaxed from infinity to a finite value (say 
Re = 2240), then damping could be used to control the TWF. This allowed heavier 
compliant walls to be used with a consequent improvement in performance. The wall 
mass (or, equivalently, the plate thickness) could be increased by a factor of up to 
about three times the value corresponding to Re,, = co given in table 2. Greater wall 
masses than this gave rise to the powerful instability which occurs when the TSI and 
TWF coalesce (see Carpenter et al. 1983; Carpenter & Garrad 1985; and Willis 1986). 
For anisotropic compliant walls with 8 2 60" a much smaller rise in wall mass led to 
modal coalescence in the present study. This is probably because in the case of 
anisotropic compliant walls with positive fibre angles the irreversible energy transfer 
due to the work done by the fluctuating shear stress already exercises a damping-like 
effect. Thus the effective damping is considerably higher than the viscoelastic 
damping'in this case. It should be made clear, however, that our investigation of the 
effects of damping has not been comprehensive. 

Finally, it may be worth speculating briefly on whether or not anisotropic wall 
compliance has been exploited by nature. Most diagrams and photographs of cross- 
sections of the dolphin epidermis (e.g. see Carpenter & Garrad 1985, figure 2) make 
it appear as if the dermal papillae are vertical. In fact, according to Babenko & 
Surkina (1969) the angle made by the dermal papillae to  the surface varies very 
considerably, but in a organized fashion, from 10" to 90" over the body of the 
dolphin. Now, from the present study, it appears that one of the principal factors 
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that limits what can be achieved in transition control by the use of anisotropic wall 
compliance is the irreversible energy transfer due to the work done by the fluctuating 
shear stress. It is certainly probable that this deleterious effect will be strongest in 
regions of favourable external pressure gradient, where the mean skin friction is 
greatest, and weakest in regions of adverse external pressure gradient, where the 
mean skin friction is lowest. It may be merely coincidental, of course, that the 
incidence of the dermal papillae tends to be in the region of 10' to 25" over the head 
and 55" to 80" behind the dorsal fin and just ahead of the flippers. 

6.3. Comparison with the results of Ye0 
Yeo (1986, 1990) has developed approximate volurne-based models for single- and 
double-layer fibre-composite anisotropic compliant walls and conducted a thorough 
numerical study of boundary-layer stability and transition over such surfaces. 
Before comparing his results and conclusions with those of the present study the two 
main shortcomings of Yeo's approach should be noted. First, no account was taken 
of the divergence instability. Thus we have no way of knowing whether or not the 
occurrence of this instability could have prevented the realization of some of the 
substantial reductions in TSI growth rate found by Yeo (1986, 1988, 1990) for certain 
of his isotropic and anisotropic compliant walls. Secondly, he did not use optimal 
wall properties in the sense of 35.3. His usual practice was to vary a particular wall 
property, like fibre angle for example, keeping the other properties fixed. The 
drawback with this approach is that the stability characteristics of the TWF usualIy 
change substantially as this property is varied. Hence the TWF may be more 
strongly unstable for some values of the varying property than for others. This is 
clearly evident for some of Yeo's neutral-stability curves. Consequently the 
comparisons of the effect on the TSI between one case and another are not on a 
completely firm footing. In contrast, with the present approach the properties are 
varied so that the TWF (and divergence) are marginally stable at Re = co or some 
other specified value. Thus with the present approach there is no danger that any. 
gains achieved for the TSI have to be offset against destabilization of the TWF mode. 
These comments are not intended as criticisms of Yeo's work but, rather, the 
shortcomings stem from his attempt to use a more realistic theoretical model than 
that of the present study. It is simply not possible with our present state of 
knowledge to predict the divergence instability or to carry out the optimization of 
wall properties for a volume-based model of an anisotropic compliant wall. 

The maximum-amplification envelopes (n. vs. Re, curves) of Yeo are quite similar 
to those obtained in the present study for both isotropic and anisotropic walls. His 
anisotropic curves were more sigmoid in shape than those in figure 22, but this is 
probably because his fibre angles were not as large : Yeo's fibre angle A, is measured 
from the vertical whereas 8 is measured from the horizontal. His predicted 
transitional Reynolds numbers are also comparable with those of figures 23 and 24. 
His conclusion that the TWF instability is independent of the sign of the fibre angle 
is also completely supported by the results of the present study (see 95.5). 

The results of the present study do not support his conclusions with regard to the 
effect of the sign of the fibre angle on the TSI. He concludes that:  'Since the TSI 
regimes at large Reynolds numbers are largely unaffected by the sign of A,, it is not 
unreasonable to deduce that significant gains in stability (and projected transition 
distance) . . . . are to a large measure the consequences of some desirable changes to the 
compliant qualities of the wall. ' The present results show quite conclusively that 
increased stabilization of the TSI comes about from a variety of mechanisms, 
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principally reduced production of disturbance energy by the Reynolds stresses, all of 
which are sensitive to the sign of the fibre angle. Moreover, some of the results given 
in figure 20 show conclusively that the reduced growth rates are not just a 
consequence of desirable changes to the compliant qualities of the wall, but are 
inherently a consequence of the wall having horizontal, as well as vertical, motion. 
Although the additional stabilization found with anisotropic wall compliance is 
associated with viscous effects and, therefore, becomes weaker at  higher Reynolds 
number, it is nevertheless found to persist to a sufficient degree at  large Reynolds 
numbers, resulting in predictions of a very substantial postponement of lam- 
inar/turbulent transition. 

Why are Yeo’s conclusions in conflict with those of the present study? The 
principal reason would appear to be that his fibre angles A, were rather large. Thus 
one of his main comparisons of the effects of positive and negative fibre angles was 
carried out for A,  = f. 60’ (i.e. 0 = f 30’). At such low values of 0 there is not much 
to choose between the positive and negative orientation, as can be seen from figure 
20. This is because the effects of energy transfer due to the work done by the 
fluctuating shear stress and the rise in the energy transfer from the disturbance to the 
mean flow due to the interaction of the fluctuating shear stress and the displaced 
mean flow partially offset the effects of increased production and reduced pressure 
work in the case of negative fibre angle. Also, in the case of Yeo’s walls there was a 
certain amount of displacement parallel to the fibre direction (see figure 7)  and, as 
was shown in $5.4, this reduces the differences between positive and negative fibre 
angles. Be that as it may, Yeo’s actual results are not in conflict with the conclusions 
of the present study. For example his neutral curves (figure 13 b of Yeo 1990) show 
that the regions of instability are greater for negative than positive fibre angles. 
Furthermore his distributions for normalized Reynolds stress (figure 23 of Yeo 1990) 
show that the production of energy would be considerably greater for the negative 
than positive fibre angles. This is notwithstanding the miniscule contribution of the 
region of negative Reynolds stress noted by Ye0 in the latter case. Accordingly it is 
suggested here that Yeo’s conclusion on the effect of fibre orientation on the TSI are 
not correct in general, but his actual results are fully compatible with the conclusions 
of the present study. 

7. Conclusions 
A relatively simple surface-based theoretical model of an anisotropic compliant 

wall has been developed and a numerical investigation of its effects on boundary- 
layer instability and transition carried out. An asymptotic theory has also been used, 
together with a study of the energy equation, to elucidate the mechanisms of 
instability for more general compliant walls. The following are the main practical 
conclusions to be drawn from the present study: 

Anisotropic wall compliance with positive fibre orientation confers considerable 
advantage with respect to reduction in instability growth rate and transition delay. 
An almost ten-fold increase in transitional Reynolds number is predicted for 
anisotropic walls having the appropriate properties. 

The reduction in the growth of Tollmien-Schlichting waves by the use of wall 
compliance is a result of a favourable balance being established between several 
competing energy-transfer mechanisms, including those found for the rigid wall, 
namely energy production by the Reynolds stress and viscous dissipation. However, 
since viscous dissipation is insensitive to the sign of the fibre angle, the particularly 
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favourable effect of anisotropic wall compliance with positive fibre angle may 
primarily be attributed to a reduction in the production of energy by the Reynolds 
stress. Even so the other mechanisms of energy transfer remain important and the 
overall balance between them is such that for fairly small fibre angles anisotropic 
wall compliance has a favourable effect regardless of the sign of the fibre angle. 

Some of the other mechanisms for stabilization/destabilization are also sensitive 
to the sign of the fibre angle. For example, irreversible energy transfer from the 
disturbance to the mean flow occurs owing to the int'eraction of the fluctuating shear 
stress and displaced mean flow. In all the cases studied this mechanism resulted in 
energy being removed from the disturbance, but there appears to be a possibility of 
additional energy production for certain combinations of wall properties. The energy 
loss is relatively greater for negative fibre angles, and therefore makes a greater 
contribut,ion t'o reducing the instability growth rat'e in that case. Irreversible: energy 
transfer to/from the wall due to the work done by the fluctuating wall pressure and 
shear stress also plays a significant role. The shear-stress work is destabilizing 
(stabilizing) to the Tollmien-Schlichting waves for positive (negative) fibre angles. 
The work done by wall pressure is stabilizing and increases for positive angles but 
decreases for negative angles. 

The optimal properties of anisotropic compliant walls appear to be much less 
sensitive to Reynolds number than those corresponding to isotropic walls. 

The travelling-wave flutter and divergence instabilities are insensitive to the sign 
of the fibre angle. Anisotropic wall compliance has a considerable stabilizing effect on 
the former and viscous effects become much more important than for the isotropic 
case. 

Wall displacement parallel to the fibre direction has a mixed effect on the various 
energy-exchange mechanisms. For the best performance the wall properties of the 
fibre-composite anisotropic walls should probably be such that the wall displacement 
parallel to the fibre direction is as small as possible. In the case of isotropic walls 
horizontal displacement was found not to have a detrimental effect on the growth of 
the Tollmien-Schlichting waves, but this result is considered rather unreliable. The 
greater the wall displacement in the direction parallel to the fibres the less the 
difference in performance between walls with positive and negative fibre angles. 

The optimal properties of anisotropic compliant walls are such that the walls are 
lighter and the elastic modulus lower than the corresponding isotropic walls. 
Nevertheless these properties appear to be practically realizable at  flow speeds of 
20 m/s in water. 

Damping in the wall has a more deleterious effect on the growth of the 
Tollmien-Schlichting waves for anisotropic compliant walls than for the isotropic 
case. 

The application of global convergence methods has led to the discovery of an 
anomalous spatially growing eigenmode which, according to conventional in- 
terpretation, would represent an instability. Further study of an appropriate initial- 
value problem revealed that for compliant walls complex wavenumbers with positive 
red  parts and negative imaginary parts do not necessarily correspond to an 
instability. Accordingly, the new eigenmode probably does not constitute an 
instability. However, the associated eigenvalues are sufficiently close to the 
conventional ones to cause confusion. 

This paper was written while Dr Carpenter was on study leave at  the Department 
of Aerospace Engineering, The Pennsylvania State University. He would like to 
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